基于优化MaxEnt模型的怒江州滑坡易发性评价

P694; 目的 怒江州是典型的高山峡谷地区,地质灾害(滑坡)频发,严重制约着当地的发展.为解决这一问题,方法 综合考虑怒江州实际情况,从气象水文、地形地貌、地层岩性、植被生态和人类活动5个方面选取坡向,高程等14个影响因子,判断滑坡与各影响因子间相关性,构建评价指标体系,对最大熵(maximum entropy,MaxEnt)模型的特征类(feature combination,FC)和正则化乘数(regularization multiplier,RM)参数进行优化,对比优化前后小样本赤池信息量准则(akaike information criterion,AIC)、遗漏率(omissio...

Full description

Saved in:
Bibliographic Details
Published in河南理工大学学报(自然科学版) Vol. 44; no. 1; pp. 57 - 67
Main Authors 李益敏, 向倩英, 邓选伦, 冯显杰
Format Journal Article
LanguageChinese
Published 云南大学 云南省高校国产高分卫星遥感地质工程研究中心,云南 昆明 650500%云南大学 国际河流与生态安全研究院,云南 昆明 650500%云南大学 地球科学学院,云南 昆明 650500 2025
云南大学 地球科学学院,云南 昆明 650500
Subjects
Online AccessGet full text
ISSN1673-9787
DOI10.16186/j.cnki.1673-9787.2023070010

Cover

Abstract P694; 目的 怒江州是典型的高山峡谷地区,地质灾害(滑坡)频发,严重制约着当地的发展.为解决这一问题,方法 综合考虑怒江州实际情况,从气象水文、地形地貌、地层岩性、植被生态和人类活动5个方面选取坡向,高程等14个影响因子,判断滑坡与各影响因子间相关性,构建评价指标体系,对最大熵(maximum entropy,MaxEnt)模型的特征类(feature combination,FC)和正则化乘数(regularization multiplier,RM)参数进行优化,对比优化前后小样本赤池信息量准则(akaike information criterion,AIC)、遗漏率(omission rate,OR)和 AUC(area under curve),并基于优化的MaxEnt模型预测滑坡灾害的发生,实现怒江州滑坡易发性评价.结果 结果表明:优化后的MaxEnt模型在研究区滑坡易发性预测中适用性优秀(AUC=0.913);运用刀切法(Jackknife)计算各影响因子对易发性的影响程度,高程(S3,23.2%)、坡度(S9,22.4%)、居民点密度(S5,14.2%)、距河流距离(S13,13.7%)、距道路距离(S4,9.6%)和岩性(S7,8.7%)是前六位影响因子,累计贡献度达 91.8%;极高、高、中、低滑坡易发性等级的空间占比分别为4.88%,8.96%,18.40%,67.76%,县域中极高和高易发区占比最大的是泸水市,整体上看,极高、高易发区主要沿河流和道路分布于峡谷中,低易发区主要分布于人类活动少、河谷不发育的区域.结论 优化后的MaxEnt模型更适合怒江州滑坡易发性预测,研究结果可为怒江州防灾减灾与土地利用规划提供参考.
AbstractList P694; 目的 怒江州是典型的高山峡谷地区,地质灾害(滑坡)频发,严重制约着当地的发展.为解决这一问题,方法 综合考虑怒江州实际情况,从气象水文、地形地貌、地层岩性、植被生态和人类活动5个方面选取坡向,高程等14个影响因子,判断滑坡与各影响因子间相关性,构建评价指标体系,对最大熵(maximum entropy,MaxEnt)模型的特征类(feature combination,FC)和正则化乘数(regularization multiplier,RM)参数进行优化,对比优化前后小样本赤池信息量准则(akaike information criterion,AIC)、遗漏率(omission rate,OR)和 AUC(area under curve),并基于优化的MaxEnt模型预测滑坡灾害的发生,实现怒江州滑坡易发性评价.结果 结果表明:优化后的MaxEnt模型在研究区滑坡易发性预测中适用性优秀(AUC=0.913);运用刀切法(Jackknife)计算各影响因子对易发性的影响程度,高程(S3,23.2%)、坡度(S9,22.4%)、居民点密度(S5,14.2%)、距河流距离(S13,13.7%)、距道路距离(S4,9.6%)和岩性(S7,8.7%)是前六位影响因子,累计贡献度达 91.8%;极高、高、中、低滑坡易发性等级的空间占比分别为4.88%,8.96%,18.40%,67.76%,县域中极高和高易发区占比最大的是泸水市,整体上看,极高、高易发区主要沿河流和道路分布于峡谷中,低易发区主要分布于人类活动少、河谷不发育的区域.结论 优化后的MaxEnt模型更适合怒江州滑坡易发性预测,研究结果可为怒江州防灾减灾与土地利用规划提供参考.
Abstract_FL Objectives Nujiang Prefecture is a typical alpine canyon area,frequent landscape geological di-sasters seriously restricts local development.Methods To solve this problem,taking into account the actual situation in Nujiang Prefecture,14 influencing factors such as slope direction and elevation were selected from five aspects of meteorology and hydrology,topography and geo-morphology,stratigraphic lithology,vegetation ecology and human activities to judge the correlation between landslides and each influencing factor,and build an evaluation index system.The MaxEnt model feature combination(FC)and regulariza-tion multi-plier(RM)parameters were optimized,and the sample of the akaike information criterion(AICc),Omission Rate(OR)and AUC(Area Under Curve)value before optimization were compared with that after opitimazation,and the occurrence of landslide hazards based on the optimized MaxEnt model was predictedto realize the landslide susceptibility evaluation in Nujiang Prefecture.Results The optimized MaxEnt model has excellent applicability in predicting landslide susceptibility in the study area(AUC=0.913)).Jackknife method was used to calculate the influence degree of each influencing factor on suscepti-bility.Elevation(S3,23.2%),slope(S9,22.4%),settlement density(S5,14.2%),distance from river(S13,13.7%),distance from road(S4,9.6%)and lithology(S7,8.7%)tare the top six factors,with a cu-mulative contribution of 91.8%.The spatial proportions of extremely high,high,medium and low landslide susceptibility levels were 4.88%,8.96%,18.40%and 67.76%,respectively.The highest proportion of ex-tremely high and high susceptibility areas was found in Lushui City.On the whole,extremely high and high susceptibility areas were mainly distributed in valleys along rivers and roads,while low susceptibility areas were mainly distributed in areas with little human activities and undeveloped river valleys.Conclusions The optimized MaxEnt model is more suitable for landslide sensitivity prediction in Nujiang Prefecture,and the research results can provide reference for disaster prevention,and land use planning in Nujiang Prefecture.
Author 邓选伦
李益敏
向倩英
冯显杰
AuthorAffiliation 云南大学 地球科学学院,云南 昆明 650500;云南大学 云南省高校国产高分卫星遥感地质工程研究中心,云南 昆明 650500%云南大学 国际河流与生态安全研究院,云南 昆明 650500%云南大学 地球科学学院,云南 昆明 650500
AuthorAffiliation_xml – name: 云南大学 地球科学学院,云南 昆明 650500;云南大学 云南省高校国产高分卫星遥感地质工程研究中心,云南 昆明 650500%云南大学 国际河流与生态安全研究院,云南 昆明 650500%云南大学 地球科学学院,云南 昆明 650500
Author_FL FENG Xianjie
LI Yimin
XIANG Qianying
DENG Xuanlun
Author_FL_xml – sequence: 1
  fullname: LI Yimin
– sequence: 2
  fullname: XIANG Qianying
– sequence: 3
  fullname: DENG Xuanlun
– sequence: 4
  fullname: FENG Xianjie
Author_xml – sequence: 1
  fullname: 李益敏
– sequence: 2
  fullname: 向倩英
– sequence: 3
  fullname: 邓选伦
– sequence: 4
  fullname: 冯显杰
BookMark eNo9jz9LAzEchjNUsNZ-CweXO39J7pLLKKX-gYqLziV3JqWnpOApnk4duimWKkgRbOmkmzgVWj_OJfoxPFCcXt5neF-eNVQxPaMQ2sDgY4YjtpX6iTntloVTT_CI-wQIBQ6AoYKq_3gV1bOsG5cUA6VAqkjY6aJY3BefY3v3dCDzprlwbzM7uf16Hrj-g_uY2vnELUf2ZebGj3Y4cv3X7_dBsZyvoxUtzzJV_8saOt5pHjX2vNbh7n5ju-VlGELuBUxENI4ppgA8IRFRWkqtCYsCnfATQgIZgJAcYlAk1AKrkFGCRcgExyrhtIY2f3evpNHSdNpp7_LclI_t9KaTX-dxqRqWPsDpD41pXuE
ClassificationCodes P694
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16186/j.cnki.1673-9787.2023070010
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Evaluation of landslide susceptibility in Nujiang Prefecture based on optimized MaxEnt model
EndPage 67
ExternalDocumentID jzgxyxb202501007
GrantInformation_xml – fundername: (国家自然科学基金); (云南省科技厅-云南大学联合基金重点资助项目); (云南大学大湄公河次区域气候变化研究省创新团队项目); (中国地质调查局项目)
  funderid: (国家自然科学基金); (云南省科技厅-云南大学联合基金重点资助项目); (云南大学大湄公河次区域气候变化研究省创新团队项目); (中国地质调查局项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1057-46983bb313007c282efaaff2684fc7d224a409a70b0e25f91e56321956971ec73
ISSN 1673-9787
IngestDate Thu May 29 04:07:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 易发性
Nujiang Prefecture
susceptibility
怒江州
最大熵模型
maximum entropy model
landslide
滑坡
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1057-46983bb313007c282efaaff2684fc7d224a409a70b0e25f91e56321956971ec73
PageCount 11
ParticipantIDs wanfang_journals_jzgxyxb202501007
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 河南理工大学学报(自然科学版)
PublicationTitle_FL Journal of Henan Polytechnic University(Natural Science)
PublicationYear 2025
Publisher 云南大学 云南省高校国产高分卫星遥感地质工程研究中心,云南 昆明 650500%云南大学 国际河流与生态安全研究院,云南 昆明 650500%云南大学 地球科学学院,云南 昆明 650500
云南大学 地球科学学院,云南 昆明 650500
Publisher_xml – name: 云南大学 地球科学学院,云南 昆明 650500
– name: 云南大学 云南省高校国产高分卫星遥感地质工程研究中心,云南 昆明 650500%云南大学 国际河流与生态安全研究院,云南 昆明 650500%云南大学 地球科学学院,云南 昆明 650500
SSID ssib010103302
ssj0003314027
ssib006704847
ssib051373601
ssib036434603
ssib031741050
ssib005319289
ssib002423915
ssib011070700
ssib008679455
ssib006595874
Score 2.4175808
Snippet P694; 目的 怒江州是典型的高山峡谷地区,地质灾害(滑坡)频发,严重制约着当地的发展.为解决这一问题,方法 综合考虑怒江州实际情况,从气象水文、地形地貌、地层岩性、植被生态和人类活动5个方面选取坡向,高程等14个影响因子,判断滑坡与各影响因子间相关性,构建评价指标体系,对最大熵(maximum...
SourceID wanfang
SourceType Aggregation Database
StartPage 57
Title 基于优化MaxEnt模型的怒江州滑坡易发性评价
URI https://d.wanfangdata.com.cn/periodical/jzgxyxb202501007
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Na9RANJQWxIsoKn5ToXMqW_Mxn8ekm6UI9dRCbyXZTeoHrGC3UHvqoTdFqYIUwZZe1Jt4KrT-nO7qz_C9N9Ns-oFUwUt4mbzvN0neDDPzPG-irTptnnHe4BFefAGvFDdFo4xEpEzmm47EvcOzj-TMPH-4IBZGxj7XVi2t9PKp9tqZ-0r-JarQBnHFXbJ_EdmKKTQADPGFK0QYrueKMUsFMy2WxCzleNUpAdPMaHykAZCz2Wra7bFUslizOCCSlOmEpYoZIOH4CJc7hAgkATIEnEQhGrYkzFiqJpFLZG4i4t-iR0QeK5YC_xYx5EiVqHriS6xClljCJjOKFPCZlk5cLBCIObECAMTJGgBSYsJpoYFaozgNVDHyAaGJRABorbaOCh4ZQrZU1awH2dEkhwFFgryxBW0aogjUz7JDCw2JBMOCIQowD8kbBlFAlvV_LOtcwERwjPVckjrRiV-fcLHbsunlcLF0cq2nTvpl8iwkMARMDFCXOKEuAHL9o5iD3k1HhYwqHIHusUEAPtDoItwimwJyuUQH234BIhIfHZFw7FDD0Cm8td0KhBpOgKGwgFCNeiMydJAIXuvT-k86wVoeAekk5PUCq4iLc_qkMtMwA8qLWqcDQJBzSBkXd2sU9V9te01KMRRIi9adtoU4x-H_NMF62L4c0VmdugL-TZlaHiJV1DDK5aIuUbEHpR77INuswx7x7vJXW93mVGaEdTEoNWp3nz2ZqvhPhTgJgYtP_GFGWK3Tfbq2tPpyNce3wA_o0I6xUEkZ1qauXJqPdSaO_dfDWhULPLNU14aZUkHeUJvGwEM_-XB_fIC1Z2rHEuIUlV87RhSGPLg4fXgPoyouh6tJRBCpSLrlNJiRR1HAfareXdl9wZs48sqDP_iEtnJ2y6y7VBt1zF32LrnpgvHYfvuveCNrj696pr-zf7j_5vDHVv_1B_t9H3zd7W-_-vlxY7D-bvB9p7-3PTjY7H_aHWy977_dHKx_-fVt4_Bg75o330rnpmcargROYxkLsDewvm-U5xEuOlDtUIdFmWVliUd0lfCbhfFXxn2TKT_3i1CUJiiEjELcA25UULRVdN0b7T7vFje8cSO1ESrnuRI5LzuFDkvI1ToAizITUXHTu-9MXXS_uOXFk_G_dQ6c295FhO009R1vtPdipbgLA7defo96zW-uiRF-
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BC%98%E5%8C%96MaxEnt%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%80%92%E6%B1%9F%E5%B7%9E%E6%BB%91%E5%9D%A1%E6%98%93%E5%8F%91%E6%80%A7%E8%AF%84%E4%BB%B7&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%8E%E7%9B%8A%E6%95%8F&rft.au=%E5%90%91%E5%80%A9%E8%8B%B1&rft.au=%E9%82%93%E9%80%89%E4%BC%A6&rft.au=%E5%86%AF%E6%98%BE%E6%9D%B0&rft.date=2025&rft.pub=%E4%BA%91%E5%8D%97%E5%A4%A7%E5%AD%A6+%E4%BA%91%E5%8D%97%E7%9C%81%E9%AB%98%E6%A0%A1%E5%9B%BD%E4%BA%A7%E9%AB%98%E5%88%86%E5%8D%AB%E6%98%9F%E9%81%A5%E6%84%9F%E5%9C%B0%E8%B4%A8%E5%B7%A5%E7%A8%8B%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500%25%E4%BA%91%E5%8D%97%E5%A4%A7%E5%AD%A6+%E5%9B%BD%E9%99%85%E6%B2%B3%E6%B5%81%E4%B8%8E%E7%94%9F%E6%80%81%E5%AE%89%E5%85%A8%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500%25%E4%BA%91%E5%8D%97%E5%A4%A7%E5%AD%A6+%E5%9C%B0%E7%90%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500&rft.issn=1673-9787&rft.volume=44&rft.issue=1&rft.spage=57&rft.epage=67&rft_id=info:doi/10.16186%2Fj.cnki.1673-9787.2023070010&rft.externalDocID=jzgxyxb202501007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjzgxyxb%2Fjzgxyxb.jpg