Research on ship track prediction method based on improved PSO-BP algorithm

Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum of standard particle swarm optimization BP network algorithm, an improved PSO-BP neural network algorithm is proposed. The learning rate in BP...

Full description

Saved in:
Bibliographic Details
Main Authors Zhu, FaXin, Li, JinYuan, Bi, QinLin, Lai, MinLing
Format Conference Proceeding
LanguageEnglish
Published SPIE 16.02.2023
Online AccessGet full text
ISBN9781510663053
1510663053
ISSN0277-786X
DOI10.1117/12.2668566

Cover

Abstract Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum of standard particle swarm optimization BP network algorithm, an improved PSO-BP neural network algorithm is proposed. The learning rate in BP network changes with the cosine of weight in PSO algorithm. At the same time, PSO algorithm based on sine function change and adaptive change of learning factor is used to optimize the inertia weight. For the original AIS data, layda criterion and cubic spline interpolation were used to remove the outliers and repair the missing values of AIS data. Experimental verification with AIS data after processing shows that the improved PSO-BP algorithm improves the prediction accuracy, the prediction accuracy of latitude and longitude increases by 15.3% and 17.2% respectively, while reducing the possibility of falling into the local minimum and improving the convergence speed.
AbstractList Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum of standard particle swarm optimization BP network algorithm, an improved PSO-BP neural network algorithm is proposed. The learning rate in BP network changes with the cosine of weight in PSO algorithm. At the same time, PSO algorithm based on sine function change and adaptive change of learning factor is used to optimize the inertia weight. For the original AIS data, layda criterion and cubic spline interpolation were used to remove the outliers and repair the missing values of AIS data. Experimental verification with AIS data after processing shows that the improved PSO-BP algorithm improves the prediction accuracy, the prediction accuracy of latitude and longitude increases by 15.3% and 17.2% respectively, while reducing the possibility of falling into the local minimum and improving the convergence speed.
Author Li, JinYuan
Bi, QinLin
Zhu, FaXin
Lai, MinLing
Author_xml – sequence: 1
  givenname: FaXin
  surname: Zhu
  fullname: Zhu, FaXin
  organization: College of Naval Architecture and Shipping, Zhejiang Ocean University (China)
– sequence: 2
  givenname: JinYuan
  surname: Li
  fullname: Li, JinYuan
  organization: College of Naval Architecture and Shipping, Zhejiang Ocean University (China)
– sequence: 3
  givenname: QinLin
  surname: Bi
  fullname: Bi, QinLin
  organization: College of Marine Engineering, Guangzhou Institute of Navigation (China)
– sequence: 4
  givenname: MinLing
  surname: Lai
  fullname: Lai, MinLing
  organization: Guangdong University of Technology (China)
BookMark eNotkFtLw0AUhBesYFv74i_Is5C6Zzd7e9SiVSy0eAHfwl5OmtU2Cdng7zfFPs0wDMPHzMikaRsk5AboEgDUHbAlk1ILKS_IwigNAqiUnAo-IVPKlMqVll9XZJbSN6VMC2Wm5PUNE9re11nbZKmOXTb01v9kXY8h-iGO6RGHug2ZswnDqRWPXd_-jn73vs0fdpk97Ns-DvXxmlxW9pBwcdY5-Xx6_Fg955vt-mV1v8kTUCHz4KjUoVJBcmTOCa4LxwMtfCEC9xQqDgYCilBZpplRxhrHKQsWEbTwms_J7f9u6iKWI4zHEbbZpxJoebqiBFaer-B_S4BRvA
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.2668566
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Sheng, Jinlu
Zhou, Jianting
Editor_xml – sequence: 1
  givenname: Jianting
  surname: Zhou
  fullname: Zhou, Jianting
– sequence: 2
  givenname: Jinlu
  surname: Sheng
  fullname: Sheng, Jinlu
  organization: Chongqing Jiaotong Univ. (China)
EndPage 1259131-6
ExternalDocumentID 10_1117_12_2668566
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s1056-db068df7d63e2bb5384b3d04c45d3c01f3191de5dfa282979a9b302daee185c83
ISBN 9781510663053
1510663053
ISSN 0277-786X
IngestDate Sat Apr 15 18:23:21 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1056-db068df7d63e2bb5384b3d04c45d3c01f3191de5dfa282979a9b302daee185c83
Notes Conference Location: Guangzhou, China
Conference Date: 2022-09-23|2022-09-25
ParticipantIDs spie_proceedings_10_1117_12_2668566
PublicationCentury 2000
PublicationDate 20230216
PublicationDateYYYYMMDD 2023-02-16
PublicationDate_xml – month: 2
  year: 2023
  text: 20230216
  day: 16
PublicationDecade 2020
PublicationYear 2023
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
ssib050947508
Score 2.2127814
Snippet Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum...
SourceID spie
SourceType Publisher
StartPage 1259131
Title Research on ship track prediction method based on improved PSO-BP algorithm
URI http://www.dx.doi.org/10.1117/12.2668566
Volume 12591
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXODEUsQuS3BDhqxOcqQsYisUAVI5VXbsQASkqKQXvp6xszhsEnCJkpHVpp2n8RvPhtAWFcyiknES0ZATjzuSMJtbxA8ALX6gAig62-KCHt96p32_b6b06eqSnO_Eb9_WlfxHqyADvaoq2T9otv5QEMA96BeuoGG4fiK_3-4zVdacOvDXSVf5iMWPquxfpMUE8GI-9LbaqoRaleojBLjvXV-STm-bPd0PR2n-8GzOj8eazrJ-anJ1dMD_NM3uxgZKHS28SrPzxsJitHVXC--b5wmOiuKSotyxzMI4-ehjAiVQtMQqevqWpkkFfoNQzyA0dhQ8KbthC_VzaeJlU0LoD7ZbV_87O8AZQp9-apDd8FiCge0MykWTaDIIwJpN7R10z68rS6K6AgIVquNJDsBOO0LVe6sSv_p3lZ2_6ueyiy180a55G5Xp95LKBvm4mUVtU5aJezUQ5tCEzObRTKOj5AI6qzCBhxlWmMAaE9hgAheYwBoTalWFCVxgAteYaKPbo8Ob_WNSzssgr8CSKRHcoqFIAkFd6XAOW5nHXWF5secLN7bsBMytLaQvEqbi50HEIu5ajmBSAmuLQ3cRtbJhJpcQdn0eg6MrhUh8T8Y2p-C4Mx47USItyuxltKn-jYFB_-vgq3JWfrVqFU0bHK6hVj4ay3VgejnfKNX6DguZRlM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Research+on+ship+track+prediction+method+based+on+improved+PSO-BP+algorithm&rft.au=Zhu%2C+FaXin&rft.au=Li%2C+JinYuan&rft.au=Bi%2C+QinLin&rft.au=Lai%2C+MinLing&rft.date=2023-02-16&rft.pub=SPIE&rft.isbn=9781510663053&rft.issn=0277-786X&rft.volume=12591&rft.spage=1259131&rft.epage=1259131-6&rft_id=info:doi/10.1117%2F12.2668566&rft.externalDocID=10_1117_12_2668566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon