Research on ship track prediction method based on improved PSO-BP algorithm
Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum of standard particle swarm optimization BP network algorithm, an improved PSO-BP neural network algorithm is proposed. The learning rate in BP...
Saved in:
| Main Authors | , , , |
|---|---|
| Format | Conference Proceeding |
| Language | English |
| Published |
SPIE
16.02.2023
|
| Online Access | Get full text |
| ISBN | 9781510663053 1510663053 |
| ISSN | 0277-786X |
| DOI | 10.1117/12.2668566 |
Cover
| Abstract | Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum of standard particle swarm optimization BP network algorithm, an improved PSO-BP neural network algorithm is proposed. The learning rate in BP network changes with the cosine of weight in PSO algorithm. At the same time, PSO algorithm based on sine function change and adaptive change of learning factor is used to optimize the inertia weight. For the original AIS data, layda criterion and cubic spline interpolation were used to remove the outliers and repair the missing values of AIS data. Experimental verification with AIS data after processing shows that the improved PSO-BP algorithm improves the prediction accuracy, the prediction accuracy of latitude and longitude increases by 15.3% and 17.2% respectively, while reducing the possibility of falling into the local minimum and improving the convergence speed. |
|---|---|
| AbstractList | Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum of standard particle swarm optimization BP network algorithm, an improved PSO-BP neural network algorithm is proposed. The learning rate in BP network changes with the cosine of weight in PSO algorithm. At the same time, PSO algorithm based on sine function change and adaptive change of learning factor is used to optimize the inertia weight. For the original AIS data, layda criterion and cubic spline interpolation were used to remove the outliers and repair the missing values of AIS data. Experimental verification with AIS data after processing shows that the improved PSO-BP algorithm improves the prediction accuracy, the prediction accuracy of latitude and longitude increases by 15.3% and 17.2% respectively, while reducing the possibility of falling into the local minimum and improving the convergence speed. |
| Author | Li, JinYuan Bi, QinLin Zhu, FaXin Lai, MinLing |
| Author_xml | – sequence: 1 givenname: FaXin surname: Zhu fullname: Zhu, FaXin organization: College of Naval Architecture and Shipping, Zhejiang Ocean University (China) – sequence: 2 givenname: JinYuan surname: Li fullname: Li, JinYuan organization: College of Naval Architecture and Shipping, Zhejiang Ocean University (China) – sequence: 3 givenname: QinLin surname: Bi fullname: Bi, QinLin organization: College of Marine Engineering, Guangzhou Institute of Navigation (China) – sequence: 4 givenname: MinLing surname: Lai fullname: Lai, MinLing organization: Guangdong University of Technology (China) |
| BookMark | eNotkFtLw0AUhBesYFv74i_Is5C6Zzd7e9SiVSy0eAHfwl5OmtU2Cdng7zfFPs0wDMPHzMikaRsk5AboEgDUHbAlk1ILKS_IwigNAqiUnAo-IVPKlMqVll9XZJbSN6VMC2Wm5PUNE9re11nbZKmOXTb01v9kXY8h-iGO6RGHug2ZswnDqRWPXd_-jn73vs0fdpk97Ns-DvXxmlxW9pBwcdY5-Xx6_Fg955vt-mV1v8kTUCHz4KjUoVJBcmTOCa4LxwMtfCEC9xQqDgYCilBZpplRxhrHKQsWEbTwms_J7f9u6iKWI4zHEbbZpxJoebqiBFaer-B_S4BRvA |
| ContentType | Conference Proceeding |
| Copyright | COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
| Copyright_xml | – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
| DOI | 10.1117/12.2668566 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| Editor | Sheng, Jinlu Zhou, Jianting |
| Editor_xml | – sequence: 1 givenname: Jianting surname: Zhou fullname: Zhou, Jianting – sequence: 2 givenname: Jinlu surname: Sheng fullname: Sheng, Jinlu organization: Chongqing Jiaotong Univ. (China) |
| EndPage | 1259131-6 |
| ExternalDocumentID | 10_1117_12_2668566 |
| GroupedDBID | 29O 4.4 5SJ ACGFS ALMA_UNASSIGNED_HOLDINGS EBS F5P FQ0 R.2 RNS RSJ SPBNH UT2 |
| ID | FETCH-LOGICAL-s1056-db068df7d63e2bb5384b3d04c45d3c01f3191de5dfa282979a9b302daee185c83 |
| ISBN | 9781510663053 1510663053 |
| ISSN | 0277-786X |
| IngestDate | Sat Apr 15 18:23:21 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1056-db068df7d63e2bb5384b3d04c45d3c01f3191de5dfa282979a9b302daee185c83 |
| Notes | Conference Location: Guangzhou, China Conference Date: 2022-09-23|2022-09-25 |
| ParticipantIDs | spie_proceedings_10_1117_12_2668566 |
| PublicationCentury | 2000 |
| PublicationDate | 20230216 |
| PublicationDateYYYYMMDD | 2023-02-16 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230216 day: 16 |
| PublicationDecade | 2020 |
| PublicationYear | 2023 |
| Publisher | SPIE |
| Publisher_xml | – name: SPIE |
| SSID | ssj0028579 ssib050947508 |
| Score | 2.2127814 |
| Snippet | Ship track prediction is an important embodiment of ship intellectualization. Aiming at the problems of slow convergence speed and falling into local minimum... |
| SourceID | spie |
| SourceType | Publisher |
| StartPage | 1259131 |
| Title | Research on ship track prediction method based on improved PSO-BP algorithm |
| URI | http://www.dx.doi.org/10.1117/12.2668566 |
| Volume | 12591 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXODEUsQuS3BDhqxOcqQsYisUAVI5VXbsQASkqKQXvp6xszhsEnCJkpHVpp2n8RvPhtAWFcyiknES0ZATjzuSMJtbxA8ALX6gAig62-KCHt96p32_b6b06eqSnO_Eb9_WlfxHqyADvaoq2T9otv5QEMA96BeuoGG4fiK_3-4zVdacOvDXSVf5iMWPquxfpMUE8GI-9LbaqoRaleojBLjvXV-STm-bPd0PR2n-8GzOj8eazrJ-anJ1dMD_NM3uxgZKHS28SrPzxsJitHVXC--b5wmOiuKSotyxzMI4-ehjAiVQtMQqevqWpkkFfoNQzyA0dhQ8KbthC_VzaeJlU0LoD7ZbV_87O8AZQp9-apDd8FiCge0MykWTaDIIwJpN7R10z68rS6K6AgIVquNJDsBOO0LVe6sSv_p3lZ2_6ueyiy180a55G5Xp95LKBvm4mUVtU5aJezUQ5tCEzObRTKOj5AI6qzCBhxlWmMAaE9hgAheYwBoTalWFCVxgAteYaKPbo8Ob_WNSzssgr8CSKRHcoqFIAkFd6XAOW5nHXWF5secLN7bsBMytLaQvEqbi50HEIu5ajmBSAmuLQ3cRtbJhJpcQdn0eg6MrhUh8T8Y2p-C4Mx47USItyuxltKn-jYFB_-vgq3JWfrVqFU0bHK6hVj4ay3VgejnfKNX6DguZRlM |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Research+on+ship+track+prediction+method+based+on+improved+PSO-BP+algorithm&rft.au=Zhu%2C+FaXin&rft.au=Li%2C+JinYuan&rft.au=Bi%2C+QinLin&rft.au=Lai%2C+MinLing&rft.date=2023-02-16&rft.pub=SPIE&rft.isbn=9781510663053&rft.issn=0277-786X&rft.volume=12591&rft.spage=1259131&rft.epage=1259131-6&rft_id=info:doi/10.1117%2F12.2668566&rft.externalDocID=10_1117_12_2668566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon |