Research on water supply network pressure prediction using PSO-BP neural network algorithm

Ensuring the accurate prediction of water supply network pressure is crucial for the efficient operation of the water supply system. The purpose is to address the issue of insufficient accuracy in short-term forecasting. The method of short-term prediction for network pressure nodes using the Partic...

Full description

Saved in:
Bibliographic Details
Published inProceedings of SPIE, the international society for optical engineering Vol. 13395; pp. 1339532 - 1339532-7
Main Authors Wang, Chaoran, Wang, Changtao, Shan, Dan, Yuan, Baolong
Format Conference Proceeding
LanguageEnglish
Published SPIE 12.11.2024
Online AccessGet full text
ISBN9781510685437
151068543X
ISSN0277-786X
DOI10.1117/12.3049406

Cover

Abstract Ensuring the accurate prediction of water supply network pressure is crucial for the efficient operation of the water supply system. The purpose is to address the issue of insufficient accuracy in short-term forecasting. The method of short-term prediction for network pressure nodes using the Particle Swarm Optimization-Back Propagation (PSO-BP) neural network algorithm is proposed in this paper. Firstly, the real pressure data collected from a water supply network, upon which this paper relies, is cleaned using the Cook’s distance method. After the dirty data is removed, Back Propagation (BP), Genetic Algorithm-Back Propagation (GA-BP), and PSO-BP are employed to predict the pressure in the water supply network. By comparing the prediction results, PSO-BP was found to be the most accurate among the three algorithms, with an RMSE (Root Mean Square Error) of 1.9132. In order to solve the problem of insensitive regions in pressure prediction, a variable sliding window method is proposed to determine the data set based on the previous method. The results indicate that this method can effectively improve the accuracy of prediction in insensitive areas.
AbstractList Ensuring the accurate prediction of water supply network pressure is crucial for the efficient operation of the water supply system. The purpose is to address the issue of insufficient accuracy in short-term forecasting. The method of short-term prediction for network pressure nodes using the Particle Swarm Optimization-Back Propagation (PSO-BP) neural network algorithm is proposed in this paper. Firstly, the real pressure data collected from a water supply network, upon which this paper relies, is cleaned using the Cook’s distance method. After the dirty data is removed, Back Propagation (BP), Genetic Algorithm-Back Propagation (GA-BP), and PSO-BP are employed to predict the pressure in the water supply network. By comparing the prediction results, PSO-BP was found to be the most accurate among the three algorithms, with an RMSE (Root Mean Square Error) of 1.9132. In order to solve the problem of insensitive regions in pressure prediction, a variable sliding window method is proposed to determine the data set based on the previous method. The results indicate that this method can effectively improve the accuracy of prediction in insensitive areas.
Author Wang, Chaoran
Wang, Changtao
Yuan, Baolong
Shan, Dan
Author_xml – sequence: 1
  givenname: Chaoran
  surname: Wang
  fullname: Wang, Chaoran
  organization: Shenyang Jianzhu University (China)
– sequence: 2
  givenname: Changtao
  surname: Wang
  fullname: Wang, Changtao
  organization: Shenyang Jianzhu University (China)
– sequence: 3
  givenname: Dan
  surname: Shan
  fullname: Shan, Dan
  organization: Shenyang Jianzhu University (China)
– sequence: 4
  givenname: Baolong
  surname: Yuan
  fullname: Yuan, Baolong
  organization: Shenyang Jianzhu University (China)
BookMark eNo9kFtLw0AUhBdUsK198RfkWUg9Zze7mzxq8QaFFi8gvoTdzUkbjUnYTSj-e1MsPs3AfAzDTNlp0zbE2CXCAhH1NfKFgCRLQJ2weaZTlAgqlYnQp2wCXOtYp-r9nE1D-ATgqdTZhH08UyDj3S5qm2hvevJRGLqu_oka6vet_4o6TyEMng6mqFxfjeAQqmYbbV7W8e1mBAdv6n_e1NvWV_3u-4KdlaYOND_qjL3d370uH-PV-uFpebOKA4JUsZVWlgmiIiyFcCloENwqTmNqCp5YR1i4BOiQZ1bZUlgJVlJpHIIrxIxd_fWGrqK8862jcWizDTlCfngmR54fnxG_72NYvQ
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3049406
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Yue, Yang
Editor_xml – sequence: 1
  givenname: Yang
  surname: Yue
  fullname: Yue, Yang
  organization: Xi'an Jiaotong Univ. (China)
EndPage 1339532-7
ExternalDocumentID 10_1117_12_3049406
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
ID FETCH-LOGICAL-s1056-b5b5f4116e1f33c807032b62e105ad24bce1dc40ee1f39b6bf3b50b5efac10cd3
ISBN 9781510685437
151068543X
ISSN 0277-786X
IngestDate Sun Nov 17 04:14:10 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1056-b5b5f4116e1f33c807032b62e105ad24bce1dc40ee1f39b6bf3b50b5efac10cd3
Notes Conference Location: Wuhan, China
Conference Date: 2024-07-26|2024-07-28
ParticipantIDs spie_proceedings_10_1117_12_3049406
PublicationCentury 2000
PublicationDate 20241112
PublicationDateYYYYMMDD 2024-11-12
PublicationDate_xml – month: 11
  year: 2024
  text: 20241112
  day: 12
PublicationDecade 2020
PublicationTitle Proceedings of SPIE, the international society for optical engineering
PublicationYear 2024
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2761617
Snippet Ensuring the accurate prediction of water supply network pressure is crucial for the efficient operation of the water supply system. The purpose is to address...
SourceID spie
SourceType Publisher
StartPage 1339532
Title Research on water supply network pressure prediction using PSO-BP neural network algorithm
URI http://www.dx.doi.org/10.1117/12.3049406
Volume 13395
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywVOFIp4FVmC2yolTuw8jrQFFURhpW2lwmXlV7orQVJ1s0Ltv-GfMn4kTssiAZcoGVvOY77Y4_HMZ4ReJarKK6kUgFfziBa8jETJqohJBkWGMas0ucPHn7KjU_rhjJ2NRj8HUUvrVuzJ6415Jf-jVZCBXk2W7D9otm8UBHAO-oUjaBiOt4zfjePMtBfaeIzZ9L0NbTSm5PKGo281CM1sLpz3WgciwiFsukg8s4jwgxsGxZXZ9_NqUrt48YkNnDWrDnCilm6j8bV1OExnn6P96cQwZEL7XX3-7by5XLaL78F177qXgwUH-NUbxPV5y5ve9bNwLtrDUPXL2on2OfTc_vG94yKhJoOPhGmu-Sg3JrNge8RZwagjgfF9oFlhzgu72WHosAFAbNDp2mvvJdVDSZT_YZCwNAPJnllipPEtJu7B1Cifk2TuK22hrbyIx-jOm8Pjj7N-Tl8wR-fYPafJHezewxM8hffy9LjQ8OtwdxNCeLHUA6vm5D7aCfmeOIBpG410_QDdG1BVPkRfO2DgpsYWGNgBA3tF4w4YOAADW2BgBwzsgNHX74Gxg07fvT05OIr8vhzRCqzxLBJMsIoSkmlSpakszKiRiCzRUMpVQoXUREkaa1NeikxUqWCxYLriksRSpY_QuG5q_RjhTJdZmcucKK2p0GA9a1HwIiWEE5VW6gl6aT7OPPxlq_nvunn6V7WeobsBhs_RuL1c612wKFvxwmv1F06Zc9Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+SPIE%2C+the+international+society+for+optical+engineering&rft.atitle=Research+on+water+supply+network+pressure+prediction+using+PSO-BP+neural+network+algorithm&rft.au=Wang%2C+Chaoran&rft.au=Wang%2C+Changtao&rft.au=Shan%2C+Dan&rft.au=Yuan%2C+Baolong&rft.date=2024-11-12&rft.pub=SPIE&rft.isbn=9781510685437&rft.issn=0277-786X&rft.volume=13395&rft.spage=1339532&rft.epage=1339532-7&rft_id=info:doi/10.1117%2F12.3049406&rft.externalDocID=10_1117_12_3049406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon