基于神经网络模型的煤层气产能预测研究

P618.11; 目的 煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础.方法 本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测.首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测.结果 结果表明:(1)渗透...

Full description

Saved in:
Bibliographic Details
Published in河南理工大学学报(自然科学版) Vol. 44; no. 1; pp. 46 - 56
Main Authors 金毅, 郑晨晖, 宋慧波, 马家恒, 杨运航, 刘顺喜, 张昆, 倪小明
Format Journal Article
LanguageChinese
Published 河南理工大学 资源环境学院,河南 焦作 454000 2025
中原经济区煤层(页岩)气协同创新中心,河南 焦作 454000%河南理工大学 资源环境学院,河南 焦作 454000%河南理工大学 能源科学与工程学院,河南 焦作 454000
煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000
Subjects
Online AccessGet full text
ISSN1673-9787
DOI10.16186/j.cnki.1673-9787.2023030083

Cover

Abstract P618.11; 目的 煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础.方法 本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测.首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测.结果 结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为 4.06%~14.79%,平均误差值为 11.09%,预测精度明显高于BP神经网络模型,结论 根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据.
AbstractList P618.11; 目的 煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础.方法 本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测.首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测.结果 结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为 4.06%~14.79%,平均误差值为 11.09%,预测精度明显高于BP神经网络模型,结论 根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据.
Abstract_FL Objectives The productivity of coalbed methane is mainly affected by geological and engineering factors.Clarifying the influence mechanism of these factors on the productivity of coalbed methane wells is the basis for achieving fine reservoir reconstruction and increasing production of coalbed methane wells.Methods Therefore,this paper takes Shizhuang South Block in Qinshui Basin as the research object,and comprehensively considers the geological background,reservoir physical properties and dynamic drainage data,uses neural network algorithm to carry out CBM productivity prediction.Firstly,10 geological param-eters were selected as the main controlling factors for CBM productivity prediction by grey correlation analy-sis.On this basis,the fuzzy mathematics method was used to realize the division of 34 coalbed methane wells in the study area.Finally,according to the classification results,combined with the actual drainage data,the BP and LSTM neural network algorithms were used to predict the daily gas production of CBM wells.Results The results show that:(1)Based on the grey correlation method model analysis,10 param-eters such as permeability,gas saturation and reservoir pressure gradient in the study area are the key fac-tors affecting the gas production performance of coalbed methane;(2)Using fuzzy mathematics evaluation method to evaluate the enrichment of coalbed methane,the gas production effects of 34 wells in the study area is divided into three categories:favorable area,relatively favorable area and unfavorable area.(3)A coal reservoir daily gas production prediction model was established based on the LSTM algorithm,with a prediction error value between 4.06%and 14.79%,and the average error value of 11.09%.The prediction accuracy is significantly higher than the BP model.Conclusions The model has good stability and high pre-diction accuracy.It can be used as an effective means for long-term prediction of coal reservoir producti-vity,and then provide scientific basis for deployment of coalbed methane development processes and the formulation of procurement plans.the formulation of coalbed methane development plan and the scientific deployment of drainage technology.
Author 倪小明
郑晨晖
杨运航
宋慧波
金毅
马家恒
刘顺喜
张昆
AuthorAffiliation 河南理工大学 资源环境学院,河南 焦作 454000;煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000;中原经济区煤层(页岩)气协同创新中心,河南 焦作 454000%河南理工大学 资源环境学院,河南 焦作 454000%河南理工大学 能源科学与工程学院,河南 焦作 454000
AuthorAffiliation_xml – name: 河南理工大学 资源环境学院,河南 焦作 454000;煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000;中原经济区煤层(页岩)气协同创新中心,河南 焦作 454000%河南理工大学 资源环境学院,河南 焦作 454000%河南理工大学 能源科学与工程学院,河南 焦作 454000
Author_FL YANG Yunhang
NI Xiaoming
SONG Huibo
MA Jiaheng
ZHENG Chenhui
LIU Shunxi
ZHANG Kun
JIN Yi
Author_FL_xml – sequence: 1
  fullname: JIN Yi
– sequence: 2
  fullname: ZHENG Chenhui
– sequence: 3
  fullname: SONG Huibo
– sequence: 4
  fullname: MA Jiaheng
– sequence: 5
  fullname: YANG Yunhang
– sequence: 6
  fullname: LIU Shunxi
– sequence: 7
  fullname: ZHANG Kun
– sequence: 8
  fullname: NI Xiaoming
Author_xml – sequence: 1
  fullname: 金毅
– sequence: 2
  fullname: 郑晨晖
– sequence: 3
  fullname: 宋慧波
– sequence: 4
  fullname: 马家恒
– sequence: 5
  fullname: 杨运航
– sequence: 6
  fullname: 刘顺喜
– sequence: 7
  fullname: 张昆
– sequence: 8
  fullname: 倪小明
BookMark eNo9T71LAzEczVDBWvtfOLjc-UtyySWjFL-g4KJzSe5ypaek4CFWR61TQRE6idQPFHXTQYcr_W_ai_4XHijyhvcxvMdbQBXbtQahJQw-5ljwldSP7F6nNCH1ZChCnwChQAEEraDqfzyP6lnW0YBLUAqkivjsNp_mF-5p5MaXbnLlxjfFy_1sNHDXfXf-OHs_Ld6G0_z562zy_dAvPgbubuhePxfRXKL2M1P_4xraXV_baWx6ze2NrcZq08swMO4FsYo1IaEAGUjKtZDcsIQoHWMwgaKSRSzCgmlhiAINLBCSGal4FJZSAa2h5d_eI2UTZduttHt4YMvFVnrS7h33dPmTlWeA0x-TFV-O
ClassificationCodes P618.11
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16186/j.cnki.1673-9787.2023030083
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Prediction of coalbed methane productivity based on neural network models
EndPage 56
ExternalDocumentID jzgxyxb202501006
GrantInformation_xml – fundername: (国家自然科学基金); (河南省高校科技创新团队项目); (河南省高校基本科研业务费专项基金项目)
  funderid: (国家自然科学基金); (河南省高校科技创新团队项目); (河南省高校基本科研业务费专项基金项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1056-4dadb2278094936b896e5f2abd10e4a395c5c185b8e2a0b054895e9a6c7548a03
ISSN 1673-9787
IngestDate Thu May 29 04:07:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 灰色关联分析
BP neural network
productivity prediction
BP神经网络
LSTM神经网络
LSTM neural network
产能预测
grey correlation analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1056-4dadb2278094936b896e5f2abd10e4a395c5c185b8e2a0b054895e9a6c7548a03
PageCount 11
ParticipantIDs wanfang_journals_jzgxyxb202501006
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 河南理工大学学报(自然科学版)
PublicationTitle_FL Journal of Henan Polytechnic University(Natural Science)
PublicationYear 2025
Publisher 河南理工大学 资源环境学院,河南 焦作 454000
中原经济区煤层(页岩)气协同创新中心,河南 焦作 454000%河南理工大学 资源环境学院,河南 焦作 454000%河南理工大学 能源科学与工程学院,河南 焦作 454000
煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000
Publisher_xml – name: 煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000
– name: 河南理工大学 资源环境学院,河南 焦作 454000
– name: 中原经济区煤层(页岩)气协同创新中心,河南 焦作 454000%河南理工大学 资源环境学院,河南 焦作 454000%河南理工大学 能源科学与工程学院,河南 焦作 454000
SSID ssib010103302
ssj0003314027
ssib006704847
ssib051373601
ssib036434603
ssib031741050
ssib005319289
ssib002423915
ssib011070700
ssib008679455
ssib006595874
Score 2.4077451
Snippet P618.11; 目的 煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础.方法 本文以沁水盆地柿庄南区块为研究...
SourceID wanfang
SourceType Aggregation Database
StartPage 46
Title 基于神经网络模型的煤层气产能预测研究
URI https://d.wanfangdata.com.cn/periodical/jzgxyxb202501006
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1673-9787
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0003314027
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxcKkVxIsoKn5ToTmVV3c32Xwcs6_7KIKeWuitZN_brR_wBNtC7VHrqaAIPYnUDxT1pgc9tPSXeG27-i-cSdJ9WytSewmzyWSSmdndmYRkJghGCxnR3JQU1iZ5CQVlLWnKotXlpeqJ3JjEXh-7dZtPTrObM8nM0LEfjVNLiwv5eHf5r_dKjqJVqAO94i3Z_9BsTRQqAAb9QgkahvJQOiZZQlSHpJpkDEuZkUwQDZUWSFMiOxaYICryNapNMk60JDqy3TMiU2xS0J0hIBOiGTalEZExIqchUcwPoQXJJJEUaWaK6Nj2ApzE09EOGQBFUt70fS1aTFKKxCVMSdhxQyK5Hc7OPLOj4ygATBDNGwAnUlscYLlNpLQzgV7aThumx-24wjJb94ImZZFdr3rjA6cvHS7Io0NcTp-6hfoWpVBYDlB8gAL0nei4lZiw3FEQSJMKyEC3PW7qOIiIy8q3t9XiLmTbz-JoAhpDMaD4nR40dkCmM2QKkWJkZiAPZVmK4ds6ON6YlyTiMfvatMcweGIYNowXF7SlhHdgvHVz0TX3fcXOVPmdX-f0uODuB8wpJlOw9rTbv393vKY_HuPKlaL7PnAj6sOd95bnlh4t5ShAWOxjOPzjMW6WNfY7vG-IyQn2GYO4kfoAA13KxtqECzA2jbUvRopkg0vVESYsacSyw32NsBF7EvxkPNE8eAZXnPHBEYQkooJyfwYD3ThKIxbalM813yeC0T2p3PiHTOz9v35p-nMNV3XqdHDKrzFHtPthnAmGlu-cDfjO643tjWfVh_Vq83m19aLafLX76e3O-mr1cqV6-n7n6-PdL2vbGx9_Ptn69W5l99tq9Wat-vz9XDDdyabaky2fNKU1D-zxFuuZXo7320PFFOW5VLxIytjkvSgsmKEq6SZdcNJzWcQmBL6ZVEmhDO8KAE1IzwfD_Qf94kIwYpJS5AU1XEQ91uVg6iUsSDgvSsFLE8uLwXXP56z_Kc7P_qn8S4fAuRycRNhtbF4JhhceLhZXwdVfyK_ZV-Y3M9K0uA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%85%A4%E5%B1%82%E6%B0%94%E4%BA%A7%E8%83%BD%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E9%87%91%E6%AF%85&rft.au=%E9%83%91%E6%99%A8%E6%99%96&rft.au=%E5%AE%8B%E6%85%A7%E6%B3%A2&rft.au=%E9%A9%AC%E5%AE%B6%E6%81%92&rft.date=2025&rft.pub=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E7%84%A6%E4%BD%9C+454000&rft.issn=1673-9787&rft.volume=44&rft.issue=1&rft.spage=46&rft.epage=56&rft_id=info:doi/10.16186%2Fj.cnki.1673-9787.2023030083&rft.externalDocID=jzgxyxb202501006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjzgxyxb%2Fjzgxyxb.jpg