基于水位、水温、突水量和水质的充水水源识别神经网络模型

TD12; 华北石炭-二叠系岩溶型煤田主采煤层底板的太原组薄层灰岩岩溶水和奥陶系或寒武系厚层灰岩岩溶水的水化学特征存在着天然相似性,单纯以若干项水化学指标辨识这些水源存在着误判甚至错判的风险.目的 为解决寒武系灰岩水、太原组下段灰岩水和部分太原组上段灰岩水的水质指标相似而难以完全正确识别的问题,方法 提出并构建基于水位、水温、突水量和水质识别充水水源的神经网络模型.以平顶山矿区充水水源识别为例,以阴阳离子毫克当量百分比[γ(Na)%,γ(Ca+Mg)%,γ(HCO-3)%,γ(SO4+Cl)%]、钠钙比、碱硬比、ρ(CO2-3)、ρ(SO2-4)、TDS、ρ(Na+K)、水位、水位动态变化、水...

Full description

Saved in:
Bibliographic Details
Published in河南理工大学学报(自然科学版) Vol. 43; no. 5; pp. 36 - 42
Main Authors 桑向阳, 林云, 刘保民, 潘国营
Format Journal Article
LanguageChinese
Published 中国平煤神马集团 地质测量处,河南 平顶山 467000%河南理工大学 资源环境学院,河南 焦作 454000 01.09.2024
Subjects
Online AccessGet full text
ISSN1673-9787
DOI10.16186/j.cnki.1673-9787.2022070002

Cover

Abstract TD12; 华北石炭-二叠系岩溶型煤田主采煤层底板的太原组薄层灰岩岩溶水和奥陶系或寒武系厚层灰岩岩溶水的水化学特征存在着天然相似性,单纯以若干项水化学指标辨识这些水源存在着误判甚至错判的风险.目的 为解决寒武系灰岩水、太原组下段灰岩水和部分太原组上段灰岩水的水质指标相似而难以完全正确识别的问题,方法 提出并构建基于水位、水温、突水量和水质识别充水水源的神经网络模型.以平顶山矿区充水水源识别为例,以阴阳离子毫克当量百分比[γ(Na)%,γ(Ca+Mg)%,γ(HCO-3)%,γ(SO4+Cl)%]、钠钙比、碱硬比、ρ(CO2-3)、ρ(SO2-4)、TDS、ρ(Na+K)、水位、水位动态变化、水温、突水量、衰减天数共15项指标作为识别因子,构建结构为15-10-6的神经网络模型.结果 结果表明,所有训练样本对自身水源的拟合均值均超过0.98,比单纯以水质指标为识别因子的建模方法识别正确率高,能够有效消除因水质指标相似但水源不同而出现的误判或错判情况.结论 建模方法已经嵌入平顶山矿区识别充水水源计算机软件和手机APP软件中,经过检验,识别正确率达到91.3%.
AbstractList TD12; 华北石炭-二叠系岩溶型煤田主采煤层底板的太原组薄层灰岩岩溶水和奥陶系或寒武系厚层灰岩岩溶水的水化学特征存在着天然相似性,单纯以若干项水化学指标辨识这些水源存在着误判甚至错判的风险.目的 为解决寒武系灰岩水、太原组下段灰岩水和部分太原组上段灰岩水的水质指标相似而难以完全正确识别的问题,方法 提出并构建基于水位、水温、突水量和水质识别充水水源的神经网络模型.以平顶山矿区充水水源识别为例,以阴阳离子毫克当量百分比[γ(Na)%,γ(Ca+Mg)%,γ(HCO-3)%,γ(SO4+Cl)%]、钠钙比、碱硬比、ρ(CO2-3)、ρ(SO2-4)、TDS、ρ(Na+K)、水位、水位动态变化、水温、突水量、衰减天数共15项指标作为识别因子,构建结构为15-10-6的神经网络模型.结果 结果表明,所有训练样本对自身水源的拟合均值均超过0.98,比单纯以水质指标为识别因子的建模方法识别正确率高,能够有效消除因水质指标相似但水源不同而出现的误判或错判情况.结论 建模方法已经嵌入平顶山矿区识别充水水源计算机软件和手机APP软件中,经过检验,识别正确率达到91.3%.
Abstract_FL The water chemical characteristics of thin limestone karst water in the Taiyuan Formation and thick Ordovician or Cambrian thick limestone karst water in the main coal seam floor of Carboniferous-Permian karst coal field in North China are naturally similar.This similarity poses a risk of misjudgment or even miscalculation when relying solely on certain hydrochemical indexes.Objectives The water quality in-dexes of limestone water,L2 limestone water,and some L7 limestone water are similar,making accurate iden-tification challenging.To address this issue,Methods a neural network model for identifying water sources based on water level,temperature,quantity,and quality was proposed.Taking the filling water source identifi-cation of the Pingdingshan mining area as an example,a 15-10-6 neural network model was constructed with 15 indexes as identification factors,including the anion and cation percentages in milligram equiva-lents,the ratio of sodium to calcium,the ratio of alkali to hardness,ρ(CO2-3),ρ(SO2-4),TDS,ρ(Na+K),water level,dynamic change,water temperature,water intrusion,and attenuation days.Results The experimental re-sults showed that the mean value of all training samples'fitting to their own water sources exceeded 0.98,which significantly improved the recognition accuracy compared with the modeling method that simply took water quality index as the recognition factor,and could completely and effectively eliminate the misjudg-ment caused by similar water quality indexes but different water sources.Conclusions The proposed model-ing method had been incorporated into the computer software and mobile app software for identifying water sources in the Pingdingshan mining area.After testing,the recognition accuracy reached 91.3%.
Author 桑向阳
刘保民
潘国营
林云
AuthorAffiliation 中国平煤神马集团 地质测量处,河南 平顶山 467000%河南理工大学 资源环境学院,河南 焦作 454000
AuthorAffiliation_xml – name: 中国平煤神马集团 地质测量处,河南 平顶山 467000%河南理工大学 资源环境学院,河南 焦作 454000
Author_FL SANG Xiangyang
PAN Guoying
LIN Yun
LIU Baomin
Author_FL_xml – sequence: 1
  fullname: SANG Xiangyang
– sequence: 2
  fullname: LIN Yun
– sequence: 3
  fullname: LIU Baomin
– sequence: 4
  fullname: PAN Guoying
Author_xml – sequence: 1
  fullname: 桑向阳
– sequence: 2
  fullname: 林云
– sequence: 3
  fullname: 刘保民
– sequence: 4
  fullname: 潘国营
BookMark eNrjYmDJy89LZWBQMTTQMzQztDDTz9JLzsvOBHLMjXUtzS3M9YwMjIwMzA0MDIxYGDjhwhwMvMXFmUkGhkBobGxgxMkQ-HT-rie7-p5t2PJkb-_jhkYg49mOlUDG81Ug9sv2_qeTeoCMF1tWPJ_V8rS1FaQAiHZNeLG-7WnH6udL5z3f3f9878Tnu-c8W7Hw6bxuHgbWtMSc4lReKM3NEOrmGuLsoevj7-7p7OijW2xoYGqqm2RqkWKakpSYkmZuaphkZpmUappqZp5oYmSQkpSSkmRhmJRsmZhonGRuYWmYYmJqnJKclmqUaGiUYmSZnGhikGzMzaABMbc8MS8tMS89Piu_tCgPaGN8VlV6RWVFEjAITAxMDQxMjQESTnS9
ClassificationCodes TD12
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16186/j.cnki.1673-9787.2022070002
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Neural network model of water filling source identification based on water level,water temperature,water intrusion,and water quality
EndPage 42
ExternalDocumentID jzgxyxb202405005
GrantInformation_xml – fundername: (国家自然科学基金); (河南省高等学校青年骨干教师培养计划)
  funderid: (国家自然科学基金); (河南省高等学校青年骨干教师培养计划)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1055-b58d5dbadf751b69be5e67a420dbddb81bc9aa3b7891d453dcfe2a12d29ca40c3
ISSN 1673-9787
IngestDate Thu May 29 04:07:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 水位
water level
water quality
煤矿水源识别
突水量
coal mine water source identification
水温
水质
water temperature
water intrusion
神经网络
neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1055-b58d5dbadf751b69be5e67a420dbddb81bc9aa3b7891d453dcfe2a12d29ca40c3
PageCount 7
ParticipantIDs wanfang_journals_jzgxyxb202405005
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 河南理工大学学报(自然科学版)
PublicationTitle_FL Journal of Henan Polytechnic University(Natural Science)
PublicationYear 2024
Publisher 中国平煤神马集团 地质测量处,河南 平顶山 467000%河南理工大学 资源环境学院,河南 焦作 454000
Publisher_xml – name: 中国平煤神马集团 地质测量处,河南 平顶山 467000%河南理工大学 资源环境学院,河南 焦作 454000
SSID ssib010103302
ssj0003314027
ssib006704847
ssib051373601
ssib036434603
ssib031741050
ssib005319289
ssib002423915
ssib011070700
ssib008679455
ssib006595874
Score 2.405063
Snippet TD12; 华北石炭-二叠系岩溶型煤田主采煤层底板的太原组薄层灰岩岩溶水和奥陶系或寒武系厚层灰岩岩溶水的水化学特征存在着天然相似性,单纯以若干项水化学指标辨识这些水源...
SourceID wanfang
SourceType Aggregation Database
StartPage 36
Title 基于水位、水温、突水量和水质的充水水源识别神经网络模型
URI https://d.wanfangdata.com.cn/periodical/jzgxyxb202405005
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1673-9787
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0003314027
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5CBPEiiopvIqRPy8aZnpl-HGd2ZwmCgpBAbmGe8QErmARiTgpGBR9RjyIRD0LUgx48SEJ-TbLZ-C-sqh1nOkYlBpahtru66puqnumqoR-WNZpqO_UVpqmpxAQlj5ua23HTdnOHF3YaxxkmilevifFJ78qUPzU0vGnMWpqfS8bSxT-uKzmIV6EM_IqrZP_Ds5VQKAAa_AtX8DBc9-VjFvlMd1gYsMjDq4pYJFhos9CjkjZTbRa5OJtBOUYVEIoF2qiSLAh282imJFMdUsGZahlVCq-BwlYaWnnIo-i3S0VFBEzb2CroMCWIGeiQlILwCIkwJF0SMWunLNGkFBQFDsGImArNYJqEcxa6JBMaSoJkl1pCkg9EAGglEW0WCIMQTAXEAzZsISoAqcgUIAfuKxQEUhKkqhVUaWIetKq-pBBYp-QFFEhopsFarskCt4FAyWHaqWvILMCNNR2m26UNTRZB5lEkP0Qa8IKiwDe_3XCvmpw2eNpIokL0dTuwjibDSXQbGKh2hsaeEbQIe1iaEoiAN4hqIai6CwAkAB7u6i8gDozHW3v90zA0azRWOPAUEE7Dw7VcNuP-wfzaIFQ-9ceq00l8JoIBKujFruFGuD2NhX_BSR0A-eg50q0GbiJp28YgLqTb1LIM5MpRfrAZWPk2840h2xVG8DfY6W1PWIGHSlBckXZv3xyr5I9xXKeOtuF1OFVNcr21OLNwbyFBv9s-7bN8iEshuPHdp4yR8ZCGXYMiN46AwA0_lZGjgS88c2oD7pjp1YvLHTy4xdjTD7_v2MYenJAv4Mzu-j-kJJ6op2L4jitdUc5FwXDWdR3PpqOvq_s-bI3-ssrlf9iE1kF2i7g7Y4TsE8eso2WuPRIMXpzHraHFGyes6713a1trL7a_ftvaeL55_wEQ298_AtH_hPSPx8u918-A2Pm22n_zsLe0hAzwW3u58-VR78nn_oeV_vpyf-NVf_3t9ur73srTk9ZkJ5pojTfLc2Was3gccDPxVeZnSZwV0ncSoZPcz4WMPW5nSZYlkMinOo7dRCrtZJ7vZmmR89jhGddp7Nmpe8oa7t7p5qetkczRSVqkRaLz1ANX6CwpbF0IkSZe4vvyjHWpNMF0OW7MTv_eL87ug-ecdaR-f5y3hufuzucXIBuaSy5Sb_oJpkj_zA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B0%B4%E4%BD%8D%E3%80%81%E6%B0%B4%E6%B8%A9%E3%80%81%E7%AA%81%E6%B0%B4%E9%87%8F%E5%92%8C%E6%B0%B4%E8%B4%A8%E7%9A%84%E5%85%85%E6%B0%B4%E6%B0%B4%E6%BA%90%E8%AF%86%E5%88%AB%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E6%A8%A1%E5%9E%8B&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%A1%91%E5%90%91%E9%98%B3&rft.au=%E6%9E%97%E4%BA%91&rft.au=%E5%88%98%E4%BF%9D%E6%B0%91&rft.au=%E6%BD%98%E5%9B%BD%E8%90%A5&rft.date=2024-09-01&rft.pub=%E4%B8%AD%E5%9B%BD%E5%B9%B3%E7%85%A4%E7%A5%9E%E9%A9%AC%E9%9B%86%E5%9B%A2+%E5%9C%B0%E8%B4%A8%E6%B5%8B%E9%87%8F%E5%A4%84%2C%E6%B2%B3%E5%8D%97+%E5%B9%B3%E9%A1%B6%E5%B1%B1+467000%25%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E7%84%A6%E4%BD%9C+454000&rft.issn=1673-9787&rft.volume=43&rft.issue=5&rft.spage=36&rft.epage=42&rft_id=info:doi/10.16186%2Fj.cnki.1673-9787.2022070002&rft.externalDocID=jzgxyxb202405005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjzgxyxb%2Fjzgxyxb.jpg