不平衡数据下基于SVM增量学习的指挥信息系统状态监控方法

TP315; 针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法.针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐带产生分布更加均匀的新样本以调节原样本集的不平衡比.针对系统监控实时性要求高且在运行过程中会有新样本不断加入的特点,采用增量学习的方式对分类模型进行持续更新,在放松KKT(Karush-Kuhn-Tucker)更新触发条件的基础上,通过定义样本重要度并引入保留率和遗忘率的方式减少了增量学习过程中所需训练的样本数量.为了验证算法的有效...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 46; no. 3; pp. 992 - 1003
Main Authors 焦志强, 易侃, 张杰勇, 姚佩阳
Format Journal Article
LanguageChinese
Published 中国人民解放军95910部队,甘肃酒泉 735018%信息系统工程重点实验室,江苏南京 210007%空军工程大学信息与导航学院,陕西西安 710077 01.03.2024
空军工程大学信息与导航学院,陕西西安 710077
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2024.03.25

Cover

Abstract TP315; 针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法.针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐带产生分布更加均匀的新样本以调节原样本集的不平衡比.针对系统监控实时性要求高且在运行过程中会有新样本不断加入的特点,采用增量学习的方式对分类模型进行持续更新,在放松KKT(Karush-Kuhn-Tucker)更新触发条件的基础上,通过定义样本重要度并引入保留率和遗忘率的方式减少了增量学习过程中所需训练的样本数量.为了验证算法的有效性和优越性,实验部分在真实系统中获得的数据集以及UCI数据集中3类6组不平衡数据集中与现有的算法进行了对比.结果表明,所提算法能够有效实现对不平衡数据的增量学习,从而满足指挥信息系统状态监控的需求.
AbstractList TP315; 针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法.针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐带产生分布更加均匀的新样本以调节原样本集的不平衡比.针对系统监控实时性要求高且在运行过程中会有新样本不断加入的特点,采用增量学习的方式对分类模型进行持续更新,在放松KKT(Karush-Kuhn-Tucker)更新触发条件的基础上,通过定义样本重要度并引入保留率和遗忘率的方式减少了增量学习过程中所需训练的样本数量.为了验证算法的有效性和优越性,实验部分在真实系统中获得的数据集以及UCI数据集中3类6组不平衡数据集中与现有的算法进行了对比.结果表明,所提算法能够有效实现对不平衡数据的增量学习,从而满足指挥信息系统状态监控的需求.
Abstract_FL To the characteristic of limited historical sample of command,control,communication,and computer,intelligence,surveillance and reconnaissance(C4ISR),an incremental learning method based on support vector machines(SVM)is designed for imbalanced data.To the imbalance of normal/abnormal state samples of the system,first use the support vector to generate a part of new samples,and then use the idea of banding to generate new samples with a more uniform distribution to adjust the imbalance ratio of the original sample set.In view of the high requirements for real-time monitoring of the system and the continuous addition of new samples during operation,the classification model is continuously updated by incremental learning.On the basis of relaxing the KKT(Karush-Kuhn-Tucker)update triggering conditions,by defining the sample importance and the introduction of retention rate/forgetting rate to reduce the number of training samples required in the incremental learning process.In order to verify the effectiveness and superiority of the algorithm,the experimental part compared the existing algorithms in the real system data set and the UCI data set with 3 types and 6 groups of imbalanced data sets.The results show that the proposed algorithm can effectively realize the incremental learning of imbalanced data,so as to meet the requirements of the C4ISR state monitoring.
Author 易侃
焦志强
张杰勇
姚佩阳
AuthorAffiliation 空军工程大学信息与导航学院,陕西西安 710077;中国人民解放军95910部队,甘肃酒泉 735018%信息系统工程重点实验室,江苏南京 210007%空军工程大学信息与导航学院,陕西西安 710077
AuthorAffiliation_xml – name: 空军工程大学信息与导航学院,陕西西安 710077;中国人民解放军95910部队,甘肃酒泉 735018%信息系统工程重点实验室,江苏南京 210007%空军工程大学信息与导航学院,陕西西安 710077
Author_FL JIAO Zhiqiang
YI Kan
ZHANG Jieyong
YAO Peiyang
Author_FL_xml – sequence: 1
  fullname: JIAO Zhiqiang
– sequence: 2
  fullname: YI Kan
– sequence: 3
  fullname: ZHANG Jieyong
– sequence: 4
  fullname: YAO Peiyang
Author_xml – sequence: 1
  fullname: 焦志强
– sequence: 2
  fullname: 易侃
– sequence: 3
  fullname: 张杰勇
– sequence: 4
  fullname: 姚佩阳
BookMark eNo9kLtKA0EYRqeIYIx5Cyth1_lndnZiKcEbRC28YBcmuzMhQTbgKF4qA4GAJhGLWCgYI6iVFwhILoUvszurb6GiWH1winPgm0CJoBJIhKYA20AoZjNlu6R1YAPGYDHsbtsEE8fG1CYsgZL_eByltS4VMAPKGeZOEq2G_WY06H10u6b9aprPYf8s6gzDYWt9ayW6u_msn0dPD-HgNr6qmUbdNO7D966pvsS9UTzqxKdv5qQaX1-Y1qO5HJheexKNKbGjZfpvU2hzYX4ju2Tl1haXs3M5SwNmzCJUOJwK5QJIx8s40icUnFmXS8Zd5jMFTBFwAWcUl5T7VHJVAFoQjieAe4qm0PSv90AESgTFfLmyvxt8F_OHe0XvyD8u658HMMWE0S99AXCw
ClassificationCodes TP315
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2024.03.25
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL C4ISR state monitoring method based on SVM incremental learning of imbalanced data
EndPage 1003
ExternalDocumentID xtgcydzjs202403025
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1055-23a473af611e4c84ed2314967e5765d5f15f216108f7e37d3e7fb13ba4ca17cf3
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords 指挥信息系统
系统监控
支持向量机
imbalanced data
不平衡数据
incremental learning
command control communication and computer intelligence surveillance and reconnaissance(C4ISR)
support vector machine(SVM)
system monitoring
增量学习
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1055-23a473af611e4c84ed2314967e5765d5f15f216108f7e37d3e7fb13ba4ca17cf3
PageCount 12
ParticipantIDs wanfang_journals_xtgcydzjs202403025
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2024
Publisher 中国人民解放军95910部队,甘肃酒泉 735018%信息系统工程重点实验室,江苏南京 210007%空军工程大学信息与导航学院,陕西西安 710077
空军工程大学信息与导航学院,陕西西安 710077
Publisher_xml – name: 中国人民解放军95910部队,甘肃酒泉 735018%信息系统工程重点实验室,江苏南京 210007%空军工程大学信息与导航学院,陕西西安 710077
– name: 空军工程大学信息与导航学院,陕西西安 710077
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.4296694
Snippet TP315; 针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法.针对系统正常/异常状态样本不...
SourceID wanfang
SourceType Aggregation Database
StartPage 992
Title 不平衡数据下基于SVM增量学习的指挥信息系统状态监控方法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202403025
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-506X
  databaseCode: ADMLS
  dateStart: 20180801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620160
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNQWRA-iVvGbgs6pbN1kMsnMcbKbpYjtpa30VrKbpOqhgm1Be7IgFLSteKgHBWsF9eQHFKQfB__MNqv_wvfepJu1XaQKS3g7-77fJPPe7EzGsm5AUsEj0eClWMZRya3HSanuybgko1T49SSCagznO0ZGveEJ99akmOzp6-9YtTQ_Vx9qLHTdV_I_UYU2iCvukv2HyLaZQgPAEF-4QoTheqQYs9BlgWSyykLBAsUCzkLJtI2f0GMKGssIAIIO95EDRFY1Fmhq0UyGY3dGsFE7TAGaYtJnskYtQOgRmmIaWPlMAb5LPCuIZgAtCKeWy5WgQA2RQZ8gICBAiQBIzQKPcMqIhgzhJ0MVMk0MlYfiAAByczTmfvbcjSfY6JMCcDXWGTNDYg6wyA1RxhUaRaMUULu9qplUc8lWgXYon4AKK6YxiEYyxUlAyCQvfiFUbdhWyecCNSnGeFKBnIfE4FSFbgZ2Ae-cdnHcYt0Z3Si5MZoCDJ4CUhMzDJ6HktB3EnlrTuJJNxQPcKAEpGkUUI7OMSLBaU4ldw58BWrpIAKigRAn97xUgz69h5E5R4zu4UiYnlQl7zoUVIEd0XQyrbHrmBbtkk4g2CZWRG66IJBjNMhqXRl08J8in3Ty0Y3oiNzabhoIZK39P_vyAUva_UXgV4gkipeoX0EFnlN4f6CWBMO9hX6n3lIAZAx6DlcF-R0DPi4pFGU6TbOdEeST4vc6J4xoeFfm3MY8UwRa3jULgbJeUBqCIobaIoawH-Erlc1W_wPveX80N914HC_cn0UsGHodcczqcyBXKfdafbo6cnusKHOwKuiYJoESivNiP7mDh9HZRVmFZ0R4TlGGCZtDnVCUfQKF2DhNYjJYF0oGOpRqX_Hj8EzPzbr5F6No3-NMGs1Md6To46etU3ltPaDNg_KM1bNw96x1suONq_3WaHNrZW978-fGRrb2LVv50tx6vre-09xZhUfg3vu3v5Ze7H3-2Nx-13r9NFteypY_NH9sZItfW5u7rd311rPv2ZPF1puX2eqn7NV2trl2zpqoheOV4VJ-pExpFk8CLjk8cn0epZ5tJ25DukkMznKV5yfgBBGL1BapA0VwWaZ-wv2YJ35at3k9chuR7TdSft7qnXkwk1ywBtJYcRt38sex43Ke1J0kSfB1kUkqcPvwRet67o2pfMiYnToc40tHwrpsnSieQVes3rmH88lVKIbm6tfyvvEbnQ7-xA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%8D%E5%B9%B3%E8%A1%A1%E6%95%B0%E6%8D%AE%E4%B8%8B%E5%9F%BA%E4%BA%8ESVM%E5%A2%9E%E9%87%8F%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%8C%87%E6%8C%A5%E4%BF%A1%E6%81%AF%E7%B3%BB%E7%BB%9F%E7%8A%B6%E6%80%81%E7%9B%91%E6%8E%A7%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E7%84%A6%E5%BF%97%E5%BC%BA&rft.au=%E6%98%93%E4%BE%83&rft.au=%E5%BC%A0%E6%9D%B0%E5%8B%87&rft.au=%E5%A7%9A%E4%BD%A9%E9%98%B3&rft.date=2024-03-01&rft.pub=%E4%B8%AD%E5%9B%BD%E4%BA%BA%E6%B0%91%E8%A7%A3%E6%94%BE%E5%86%9B95910%E9%83%A8%E9%98%9F%2C%E7%94%98%E8%82%83%E9%85%92%E6%B3%89+735018%25%E4%BF%A1%E6%81%AF%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210007%25%E7%A9%BA%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E5%AF%BC%E8%88%AA%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89+710077&rft.issn=1001-506X&rft.volume=46&rft.issue=3&rft.spage=992&rft.epage=1003&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.03.25&rft.externalDocID=xtgcydzjs202403025
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg