基于动态进化算法的多阶段备件供应优化决策
E91; 由于实际备件保障工作中备件需求以间歇性需求为主,备件供应通常为多阶段的动态优化.针对以上问题,构建了多阶段备件供应数学模型.为求解动态优化模型,提出了一种元启发式动态进化算法.首先,在经典差分进化算法中增加了环境变化检测算子和环境变化响应策略,使得差分进化算法能够解决环境变化的动态优化问题.其次,提出了自适应莱维飞行策略,使得算法在环境发生变化时仍能保持良好的全局搜索能力和局部寻优能力.算例表明,所提出的动态自适应差分算法能够求得模型的最优可行解,且算法的分布性和收敛性均得到了很大的提升....
Saved in:
| Published in | 系统工程与电子技术 Vol. 41; no. 11; pp. 2514 - 2523 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
陆军步兵学院石家庄校区机械化步兵系,河北石家庄050003
01.11.2019
陆军工程大学石家庄校区装备指挥与管理系,河北石家庄,050003%32178部队科技创新研究中心,北京,100012%陆军工程大学石家庄校区装备指挥与管理系,河北石家庄050003 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-506X |
| DOI | 10.3969/j.issn.1001-506X.2019.11.15 |
Cover
| Abstract | E91; 由于实际备件保障工作中备件需求以间歇性需求为主,备件供应通常为多阶段的动态优化.针对以上问题,构建了多阶段备件供应数学模型.为求解动态优化模型,提出了一种元启发式动态进化算法.首先,在经典差分进化算法中增加了环境变化检测算子和环境变化响应策略,使得差分进化算法能够解决环境变化的动态优化问题.其次,提出了自适应莱维飞行策略,使得算法在环境发生变化时仍能保持良好的全局搜索能力和局部寻优能力.算例表明,所提出的动态自适应差分算法能够求得模型的最优可行解,且算法的分布性和收敛性均得到了很大的提升. |
|---|---|
| AbstractList | E91; 由于实际备件保障工作中备件需求以间歇性需求为主,备件供应通常为多阶段的动态优化.针对以上问题,构建了多阶段备件供应数学模型.为求解动态优化模型,提出了一种元启发式动态进化算法.首先,在经典差分进化算法中增加了环境变化检测算子和环境变化响应策略,使得差分进化算法能够解决环境变化的动态优化问题.其次,提出了自适应莱维飞行策略,使得算法在环境发生变化时仍能保持良好的全局搜索能力和局部寻优能力.算例表明,所提出的动态自适应差分算法能够求得模型的最优可行解,且算法的分布性和收敛性均得到了很大的提升. |
| Abstract_FL | Since the spare parts demand is almost the intermittent demand in real spare parts support ,the supply of spare parts is usually a multi‐stage dynamic optimization problem .Focusing on this ,a multi‐stage mathematical model of spare parts supply is constructed .In order to solve this kind of dynamic optimization problem ,a meta‐heuristic dynamic optimization algorithm is proposed .Firstly ,an environment change detector and an environ‐ment change response strategy are added to the classical differential evolution algorithm ,w hich enables the differential evolution algorithm to solve the dynamic optimization problem w hen the environment changes . Secondly ,a self‐adaptive Levy flight strategy is proposed ,w hich enables the algorithm to maintain a good global exploration and local exploitation capability w hen the environment changes .Empirical test show s that the proposed dynamic self‐adaptive difference algorithm can obtain the optimal feasible solution of the model ,and the distri‐bution and convergence of the algorithm are greatly improved . |
| Author | 石全 夏伟 王亚东 尤志锋 张芳 |
| AuthorAffiliation | 陆军工程大学石家庄校区装备指挥与管理系,河北石家庄,050003%32178部队科技创新研究中心,北京,100012%陆军工程大学石家庄校区装备指挥与管理系,河北石家庄050003 ;陆军步兵学院石家庄校区机械化步兵系,河北石家庄050003 |
| AuthorAffiliation_xml | – name: 陆军工程大学石家庄校区装备指挥与管理系,河北石家庄,050003%32178部队科技创新研究中心,北京,100012%陆军工程大学石家庄校区装备指挥与管理系,河北石家庄050003 ;陆军步兵学院石家庄校区机械化步兵系,河北石家庄050003 |
| Author_FL | SHI Quan YOU Zhifeng WANG Yadong XIA Wei ZHANG Fang |
| Author_FL_xml | – sequence: 1 fullname: WANG Yadong – sequence: 2 fullname: SHI Quan – sequence: 3 fullname: ZHANG Fang – sequence: 4 fullname: YOU Zhifeng – sequence: 5 fullname: XIA Wei |
| Author_xml | – sequence: 1 fullname: 王亚东 – sequence: 2 fullname: 石全 – sequence: 3 fullname: 张芳 – sequence: 4 fullname: 尤志锋 – sequence: 5 fullname: 夏伟 |
| BookMark | eNo9jz1Lw1AYhe9QwVr7K9yExPfNzZv0gosUv6DgouBWcvNRGiQFr-LHpCAKIk5aSzu4dHCxS7FDFP0zuYn-CyuK04HDw3k4c6yUdJKQsQUEkwtHLMVmW6nERAA0CJxd0wIUJqKJVGLl_3qWVZVqSyDkLoFrl9myfkyz9FZfP-Vn558fA33TLUYP-fi-6F_oYf-rN8lHL3p4lb1OsveBTu-yt96U0Zfj4rk7z2Yib0-F1b-ssJ211e36htHYWt-srzQMhUBkYI1qZHPwLEuC51gOD33XCkhK20ISgRTcDhzBuRAoicAH4QpCaUd2RJIHvMIWf3ePvCTyklYz7hzuJ1Nj8_ig5Z8Ep7H6-YsISPwbz8Vj6g |
| ClassificationCodes | E91 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1001-506X.2019.11.15 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Multi‐stage spare parts supply optimization based on dynamic evolutionary algorithm |
| EndPage | 2523 |
| ExternalDocumentID | xtgcydzjs201911015 |
| GrantInformation_xml | – fundername: 武器装备"十三五"预先研究共用技术项目; 军内科研重点项目资助课题 funderid: (41404050501); (KYSZJWJK1742)资助课题 |
| GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
| ID | FETCH-LOGICAL-s1055-18585430a22b0a6263ec72d5bb42159db934d6933991b550c097951b4f4f5b3d3 |
| ISSN | 1001-506X |
| IngestDate | Thu May 29 04:00:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Keywords | 备件供应 动态优化 Levy flight 自适应 spare parts supply self‐adaptive dynamic optimization differential evolutionary algorithm 差分进化 莱维飞行 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1055-18585430a22b0a6263ec72d5bb42159db934d6933991b550c097951b4f4f5b3d3 |
| PageCount | 10 |
| ParticipantIDs | wanfang_journals_xtgcydzjs201911015 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 系统工程与电子技术 |
| PublicationTitle_FL | Systems Engineering and Electronics |
| PublicationYear | 2019 |
| Publisher | 陆军步兵学院石家庄校区机械化步兵系,河北石家庄050003 陆军工程大学石家庄校区装备指挥与管理系,河北石家庄,050003%32178部队科技创新研究中心,北京,100012%陆军工程大学石家庄校区装备指挥与管理系,河北石家庄050003 |
| Publisher_xml | – name: 陆军工程大学石家庄校区装备指挥与管理系,河北石家庄,050003%32178部队科技创新研究中心,北京,100012%陆军工程大学石家庄校区装备指挥与管理系,河北石家庄050003 – name: 陆军步兵学院石家庄校区机械化步兵系,河北石家庄050003 |
| SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
| Score | 2.2770576 |
| Snippet | E91; 由于实际备件保障工作中备件需求以间歇性需求为主,备件供应通常为多阶段的动态优化.针对以上问题,构建了多阶段备件供应数学模型.为求解动态优化模型,提出了一种元启... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 2514 |
| Title | 基于动态进化算法的多阶段备件供应优化决策 |
| URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs201911015 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-506X databaseCode: ADMLS dateStart: 20180801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620160 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNQWRA_iJ34j1DluTTIfmQEvkzRLEevFFnorm2RT8bCCuwXtSUEURDxpLe3BSw9e7KXYQxX9M5tWD_4H35vMbtJWpXoJj5k37zPJvJfMzHOc64mbK5Uw2kglfq0KaKshM89r-HmOP8lSmZlEcfqOmJplt-b43MiRn7VVS4u9ZCJd-u2-kv_xKrSBX3GX7D94dkgUGgAG_8IVPAzXQ_mYxJyoJgk1iRleZYwtUhMtSSxwEYP0SCxJ2CQqNF0RUYLEAdExUQHihJQoji0KhjPE0QzhWBEFAwXiAHLIbZcMDK_QdAEQW8rAXTHTEuHAihcAhgsynSRlXdlBNIyN0AXUEAhRFyQFmEYk0EKGhqY0qgXIwkoCpFyjo0Y1AVAR0cNVyogLI-xobRQyZFRUR0HbUSMiUJRVD0cttIumA_oh3dPjohkQaBoTKhRKhvWvJ56y2wgH97vBUmiI0hxoMoE6aG65D7XSwiJrf4-E6ANhDY1-Eiif9qyh8Q4wJigBGAtiVj44yGtgdz8yN4E_sENkdPojXxcLW9DaRIZL5bhrqkQOZ7ryiLHBE-3V5y1ebuW1MZDPy03g--dXqoQy8yvymBjywBWSCibfiXJn7r4DzB_1FtLH2dL9LmJBtIlHQoz5MAm7o86Ynpy-fbeK3zHcreX_kBtQWm2U9rHKmlflC1j8QPhVfsE9CgFwlc9wZOJh_l-GZgxiYVNtaSD4UWfcanXjLzqZ_XydvNVZqIWeMyedEzZnvKbLF8ApZ2Tp3mnneO0k0TPOzeL9dn_7dfHyw86Tp9-_rRWvlnc33u1svt1dfVasr_5Y2drZ-FSsv-h_3up_XSu23_S_rABO8Xxz9-PyWWe2Gc9EUw1bGKXRxXq2DQ9_5jPqtnw_cVt4nlQ7DfyMJwmDCF5liaIsE4pC8uElnLupqwLIpBKWs5wnNKPnnNHOg077PB7Z0E7cxM38IOOM5UK1A7BpmkslYCBtX3DGre7z9sXXnT_o0IuHwrrkHKsewcvOaO_hYvsKhPS95Kq9EX4B9Qq0zA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8A%A8%E6%80%81%E8%BF%9B%E5%8C%96%E7%AE%97%E6%B3%95%E7%9A%84%E5%A4%9A%E9%98%B6%E6%AE%B5%E5%A4%87%E4%BB%B6%E4%BE%9B%E5%BA%94%E4%BC%98%E5%8C%96%E5%86%B3%E7%AD%96&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E7%8E%8B%E4%BA%9A%E4%B8%9C&rft.au=%E7%9F%B3%E5%85%A8&rft.au=%E5%BC%A0%E8%8A%B3&rft.au=%E5%B0%A4%E5%BF%97%E9%94%8B&rft.date=2019-11-01&rft.pub=%E9%99%86%E5%86%9B%E6%AD%A5%E5%85%B5%E5%AD%A6%E9%99%A2%E7%9F%B3%E5%AE%B6%E5%BA%84%E6%A0%A1%E5%8C%BA%E6%9C%BA%E6%A2%B0%E5%8C%96%E6%AD%A5%E5%85%B5%E7%B3%BB%2C%E6%B2%B3%E5%8C%97%E7%9F%B3%E5%AE%B6%E5%BA%84050003&rft.issn=1001-506X&rft.volume=41&rft.issue=11&rft.spage=2514&rft.epage=2523&rft_id=info:doi/10.3969%2Fj.issn.1001-506X.2019.11.15&rft.externalDocID=xtgcydzjs201911015 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |