Research on electricity price prediction based on deep learning models

Electricity price prediction plays an important role in energy management and decision making. In this study, we use a deep learning model, specifically Long Short-Term Memory Network (LSTM), to predict electricity price data from different cities. We first pre-process the data, including data norma...

Full description

Saved in:
Bibliographic Details
Main Author Chen, Ran
Format Conference Proceeding
LanguageEnglish
Published SPIE 15.03.2024
Online AccessGet full text
ISBN9781510674684
1510674683
ISSN0277-786X
DOI10.1117/12.3026904

Cover

Abstract Electricity price prediction plays an important role in energy management and decision making. In this study, we use a deep learning model, specifically Long Short-Term Memory Network (LSTM), to predict electricity price data from different cities. We first pre-process the data, including data normalization and outlier processing, to improve the performance of the model. Subsequently, we constructed LSTM models with multi-layer structure for electricity price prediction in each city. In addition, in order to take into account the differences between cities, we introduced electricity load weights to more accurately synthesize the prediction results for each city. Finally, by applying the decision level fusion algorithm, the results show that the deep learning model performs well in electricity price prediction and provides strong support for energy management and policy making.
AbstractList Electricity price prediction plays an important role in energy management and decision making. In this study, we use a deep learning model, specifically Long Short-Term Memory Network (LSTM), to predict electricity price data from different cities. We first pre-process the data, including data normalization and outlier processing, to improve the performance of the model. Subsequently, we constructed LSTM models with multi-layer structure for electricity price prediction in each city. In addition, in order to take into account the differences between cities, we introduced electricity load weights to more accurately synthesize the prediction results for each city. Finally, by applying the decision level fusion algorithm, the results show that the deep learning model performs well in electricity price prediction and provides strong support for energy management and policy making.
Author Chen, Ran
Author_xml – sequence: 1
  givenname: Ran
  surname: Chen
  fullname: Chen, Ran
  organization: Kunming Power Exchange Center Co., Ltd. (China)
BookMark eNotUE1Lw0AUXLCCbe3FX5CzkPrefmQ3RynWCgVBFLwtm92XuhI3IZuL_94Ue5k5zAfDrNgi9YkYu0PYIqJ-QL4VwKsa5BXb1NqgQqi0rIxcsCVwrUttqs8btsr5G4Abpesl279RJjf6r6JPBXXkpzH6OP0Ww8w0I4XopziLjcsUzq5ANBTdHEoxnYqfPlCXb9l167pMmwuv2cf-6X13KI-vzy-7x2OZEZQskZQSXlHLyQvugwNoZVVrbqRxjZJaCfKoEYREIonOO2pCW3NhJHeNEGt2_9-bh0h2GHtP88B0yhbBnl-wyO3lBfEHyE1QPw
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3026904
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Liu, Yingkai
Editor_xml – sequence: 1
  givenname: Yingkai
  surname: Liu
  fullname: Liu, Yingkai
EndPage 130752L-9
ExternalDocumentID 10_1117_12_3026904
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s1054-1e553c5ef2ec32cda00f46972848ab54753ec1710341ee41acaebdf923842ab33
ISBN 9781510674684
1510674683
ISSN 0277-786X
IngestDate Sun Mar 24 04:18:20 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1054-1e553c5ef2ec32cda00f46972848ab54753ec1710341ee41acaebdf923842ab33
Notes Conference Date: 2023-11-10|2023-11-12
Conference Location: Kunming, China
ParticipantIDs spie_proceedings_10_1117_12_3026904
PublicationCentury 2000
PublicationDate 20240315
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 3
  year: 2024
  text: 20240315
  day: 15
PublicationDecade 2020
PublicationYear 2024
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.2522745
Snippet Electricity price prediction plays an important role in energy management and decision making. In this study, we use a deep learning model, specifically Long...
SourceID spie
SourceType Publisher
StartPage 130752L
Title Research on electricity price prediction based on deep learning models
URI http://www.dx.doi.org/10.1117/12.3026904
Volume 13075
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0EX_TJD4zfaaKvw63r1vXRoAYNGKOQ8LZ0XWd4GUTwxV_v7dp9iJioLws0zdg45d5zR889CF16kirqKuEwxblDJWDBwwgKVy5ESiTnwtVC4eFj2B_Th0kwqU1aC3XJMunKj7W6kv-gCmOAq1bJ_gHZ6qQwAK8BXzgCwnBcIb9r80y5a04_8Dd2NlOpSfVcNwrS6v90aozAdapK9axUqXlpFPFqXHAqTt2zOo1nu17sowBC9V4oI4a0Gyjuv5aHkM0hGdHQmLDZqKL_s2VRYR9Yh0D4pQeNMFa8J4NGVrQjDv8h7BbCfdL1oaTjxk94pY21KTZY7JHYTmqhFmMQiDavb4aDl6pKjgLTILG8Tq3GK-_Dt026qvuyDWfhxFf1p-tNefOpavCE0Q7q1ApK_FRhtos2VL6HthvNH_fRXQkfnuW4AR8u4MM1fLiAT8_S8OESPmzg66Dx3e2o13esq4WzAC5LHU8FgS8DlRElfSJT4boZDTkDnhCJJKBQPyrpAfEDfqEU9YQUKkkzIOIRJSLx_QPUzme5OkQYqFbGiIQSkqU0lSIKQ8hWDCinlBnNoiN0ob-IuF6ji_g7Dse_mnWCtuold4ray7d3dQZ8bJmcWwQ_AT4hLDY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Research+on+electricity+price+prediction+based+on+deep+learning+models&rft.au=Chen%2C+Ran&rft.date=2024-03-15&rft.pub=SPIE&rft.isbn=9781510674684&rft.issn=0277-786X&rft.volume=13075&rft.spage=130752L&rft.epage=130752L-9&rft_id=info:doi/10.1117%2F12.3026904&rft.externalDocID=10_1117_12_3026904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon