AdaBoost-PSO-LSTM网络实时预测机动轨迹

V247.5; 针对自主空战中轨迹预测难以同时保持高预测精度和短预测时间的问题,提出一种自适应增强的粒子群优化长短期记忆网络预测方法.首先,建立三自由度无人机动力学模型,解决机动轨迹的数据来源问题.其次,分析长短期记忆网络,并引入在线预测的滑动模块输入矩阵,利用粒子群优化算法代替传统基于时间的反向传播算法进行网络内部权值更新;同时为解决优化算法非定向性问题,提出数据共享方法.然后,为进一步提高预测精度,采用自适应增强算法搭建外框架,通过控制弱预测器的数量平衡预测精度与预测时间.最后,在一段变化较为频繁的轨迹进行预测,与5种神经网络预测方法进行比较,结果表明所提方法能够较好地满足精度和时间要求....

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 43; no. 6; pp. 1651 - 1658
Main Authors 谢磊, 丁达理, 魏政磊, 汤安迪, 张鹏
Format Journal Article
LanguageChinese
Published 空军工程大学航空工程学院,陕西西安710038 01.06.2021
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2021.06.23

Cover

Abstract V247.5; 针对自主空战中轨迹预测难以同时保持高预测精度和短预测时间的问题,提出一种自适应增强的粒子群优化长短期记忆网络预测方法.首先,建立三自由度无人机动力学模型,解决机动轨迹的数据来源问题.其次,分析长短期记忆网络,并引入在线预测的滑动模块输入矩阵,利用粒子群优化算法代替传统基于时间的反向传播算法进行网络内部权值更新;同时为解决优化算法非定向性问题,提出数据共享方法.然后,为进一步提高预测精度,采用自适应增强算法搭建外框架,通过控制弱预测器的数量平衡预测精度与预测时间.最后,在一段变化较为频繁的轨迹进行预测,与5种神经网络预测方法进行比较,结果表明所提方法能够较好地满足精度和时间要求.
AbstractList V247.5; 针对自主空战中轨迹预测难以同时保持高预测精度和短预测时间的问题,提出一种自适应增强的粒子群优化长短期记忆网络预测方法.首先,建立三自由度无人机动力学模型,解决机动轨迹的数据来源问题.其次,分析长短期记忆网络,并引入在线预测的滑动模块输入矩阵,利用粒子群优化算法代替传统基于时间的反向传播算法进行网络内部权值更新;同时为解决优化算法非定向性问题,提出数据共享方法.然后,为进一步提高预测精度,采用自适应增强算法搭建外框架,通过控制弱预测器的数量平衡预测精度与预测时间.最后,在一段变化较为频繁的轨迹进行预测,与5种神经网络预测方法进行比较,结果表明所提方法能够较好地满足精度和时间要求.
Author 谢磊
魏政磊
张鹏
汤安迪
丁达理
AuthorAffiliation 空军工程大学航空工程学院,陕西西安710038
AuthorAffiliation_xml – name: 空军工程大学航空工程学院,陕西西安710038
Author_FL DING Dali
WEI Zhenglei
TANG Andi
XIE Lei
ZHANG Peng
Author_FL_xml – sequence: 1
  fullname: XIE Lei
– sequence: 2
  fullname: DING Dali
– sequence: 3
  fullname: WEI Zhenglei
– sequence: 4
  fullname: TANG Andi
– sequence: 5
  fullname: ZHANG Peng
Author_xml – sequence: 1
  fullname: 谢磊
– sequence: 2
  fullname: 丁达理
– sequence: 3
  fullname: 魏政磊
– sequence: 4
  fullname: 汤安迪
– sequence: 5
  fullname: 张鹏
BookMark eNo9j7tKA0EYRqeIYIx5CythJv8_s7OzW8bgDVYiJIJdmJ3dCQkyC07ES21lKiubYGGVyk5BJfg02cS3MKJYfXCKc_g2SMUVLidkC4EhFyAbQzbw3jEEQCohPGUcODIIGRcVUv3H66Tu_SAFiUJJUEGVNJqZ3ikKP6LHnTZNOt2jxex-8TGZPz-WD69fT7fly7icvM_vpsvZdPn5tknWrD7zef1va-Rkb7fbOqBJe_-w1UyoR5CCapQGLeYKglCvWjIwgVJBKjm3cRxjGgU5RHEkeAYWTB6FUiAabZXAFFMjamT713upndWu3xsWF-duVexdjfrmOrsZ-p-LEAIX4htNpVTn
ClassificationCodes V247.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2021.06.23
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Real time prediction of maneuver trajectory for AdaBoost-PSO-LSTM network
EndPage 1658
ExternalDocumentID xtgcydzjs202106023
GrantInformation_xml – fundername: 航空基金
  funderid: (201951096002)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1053-a15c1f1e7046a37554c4774b522f9991b84e089832d0f0ce865311caf731b1bc3
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 无人机
粒子群优化长短期记忆网络
动力学模型
轨迹预测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1053-a15c1f1e7046a37554c4774b522f9991b84e089832d0f0ce865311caf731b1bc3
PageCount 8
ParticipantIDs wanfang_journals_xtgcydzjs202106023
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2021
Publisher 空军工程大学航空工程学院,陕西西安710038
Publisher_xml – name: 空军工程大学航空工程学院,陕西西安710038
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.3712175
Snippet V247.5; 针对自主空战中轨迹预测难以同时保持高预测精度和短预测时间的问题,提出一种自适应增强的粒子群优化长短期记忆网络预测方法.首先,建立三自由度无人机动力学模型,...
SourceID wanfang
SourceType Aggregation Database
StartPage 1651
Title AdaBoost-PSO-LSTM网络实时预测机动轨迹
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202106023
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-506X
  databaseCode: ADMLS
  dateStart: 20180801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620160
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kBAcEE_xViXqY1o7dhz76GyzqlALSG2l3qokmxRx2ErsImDPnODEiUvFgVNP3EACVPFr-uBfMOP1bgK7QgUpirzO-BuPJ87MrOwxIYslJggpIhYUWcUCaVgZZEVlIEox3FSio0zuVvk-VKtb8sF2tD0z-6K5u6SfLxWDqftK_kerUAd6xV2y_6DZMShUQBn0C3fQMNzPpGPbyZK9vV4_eLzxKFjb2FynaUyTFWq4KyTUtGgaUZtSk9JUUQOViqaG2pBqiTVJRHXiHrVoYpFYW2o1TTXi-EKbJqbpxDpwgfieSxsbJjG1EdZAK8SUNIFCijVGIiPsCfSNITvgopnna8eLix03hr1DGAFU9ZMhHHckKV6Iy6hWNYlBfN12sBK7PYkCEnNqpR8Vbbx81jb__Qgbq7Tc--qAzGiAAD2ZJnCEwDb2clqF2FoD9m_Np7QaEhtqnGLCli-bCBGAGCUZF3zHMV2SaJoUXLQWMXde49jmDFNT-bnVNCBc-fy75einnmroIHKMnKVDHktjHks4RpiQdriJ-49U4i_7u8WrzuBpD6mYAndtlsyHsVLhHJm3K-trG7UnjY5nIxIHL12IestyiOed8dpzx2MIVFh7-hEX4IrWkQVEtSHmMhw5SRK8Unfu0ajj58jiSKzlvwjlttZ1q6y72_ACNy-Riz58W7DDuXiZzAyeXCEXGkk9r5LliVl5cvju5Pv-0acPx--__Pz4-vjz2-P9b0dvDk4PD05_fL1GttrpZms18MeSBD0IRkSQ8ajgFS9jJlUGYkaykBBE5RDJVBhu5VqWDMZOhB1WsaLUCuwch29hLHjO80JcJ3PdvW55gywUea5iDkYX2slSCGiZdWSnCksIpDJhbpL7Xtwd_9np7Uwq8daZqG6T8_UEukPm-s-el3fBoe7n97zyfwEk-5AX
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AdaBoost-PSO-LSTM%E7%BD%91%E7%BB%9C%E5%AE%9E%E6%97%B6%E9%A2%84%E6%B5%8B%E6%9C%BA%E5%8A%A8%E8%BD%A8%E8%BF%B9&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E8%B0%A2%E7%A3%8A&rft.au=%E4%B8%81%E8%BE%BE%E7%90%86&rft.au=%E9%AD%8F%E6%94%BF%E7%A3%8A&rft.au=%E6%B1%A4%E5%AE%89%E8%BF%AA&rft.date=2021-06-01&rft.pub=%E7%A9%BA%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E8%88%AA%E7%A9%BA%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89710038&rft.issn=1001-506X&rft.volume=43&rft.issue=6&rft.spage=1651&rft.epage=1658&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2021.06.23&rft.externalDocID=xtgcydzjs202106023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg