基于通信域和雷达域融合特征的无人机集群类型识别算法

TN911; 目前已有无人机类型识别算法仅通过通信域或雷达域的信号特征实现单个无人机类型的识别,存在识别准确率低等问题.提出了一种基于通信信号和雷达信号融合特征的无人机集群类型识别算法.首先,提取集群通信信号的高阶累积量和瞬时特征统计量,并融合雷达航迹特征构建无人机集群特征矩阵.其次,提出一种改进的特征选择算法—二次筛选的近邻成分分析,对融合特征矩阵进行降维.最后,利用稀疏自编码器网络进行集群类型的识别.仿真结果表明,该算法显著降低了集群特征矩阵的维度(仅为原始矩阵维度的27%),同时在信噪比为0 dB时,对5种集群类型识别的正确率可达88%....

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 45; no. 12; pp. 3734 - 3742
Main Authors 张书衡, 翟茹萍, 刘永凯
Format Journal Article
LanguageChinese
Published 南京航空航天大学电子信息工程学院,江苏南京 210016 01.12.2023
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2023.12.03

Cover

Abstract TN911; 目前已有无人机类型识别算法仅通过通信域或雷达域的信号特征实现单个无人机类型的识别,存在识别准确率低等问题.提出了一种基于通信信号和雷达信号融合特征的无人机集群类型识别算法.首先,提取集群通信信号的高阶累积量和瞬时特征统计量,并融合雷达航迹特征构建无人机集群特征矩阵.其次,提出一种改进的特征选择算法—二次筛选的近邻成分分析,对融合特征矩阵进行降维.最后,利用稀疏自编码器网络进行集群类型的识别.仿真结果表明,该算法显著降低了集群特征矩阵的维度(仅为原始矩阵维度的27%),同时在信噪比为0 dB时,对5种集群类型识别的正确率可达88%.
AbstractList TN911; 目前已有无人机类型识别算法仅通过通信域或雷达域的信号特征实现单个无人机类型的识别,存在识别准确率低等问题.提出了一种基于通信信号和雷达信号融合特征的无人机集群类型识别算法.首先,提取集群通信信号的高阶累积量和瞬时特征统计量,并融合雷达航迹特征构建无人机集群特征矩阵.其次,提出一种改进的特征选择算法—二次筛选的近邻成分分析,对融合特征矩阵进行降维.最后,利用稀疏自编码器网络进行集群类型的识别.仿真结果表明,该算法显著降低了集群特征矩阵的维度(仅为原始矩阵维度的27%),同时在信噪比为0 dB时,对5种集群类型识别的正确率可达88%.
Author 张书衡
刘永凯
翟茹萍
AuthorAffiliation 南京航空航天大学电子信息工程学院,江苏南京 210016
AuthorAffiliation_xml – name: 南京航空航天大学电子信息工程学院,江苏南京 210016
Author_FL ZHAI Ruping
ZHANG Shuheng
LIU Yongkai
Author_FL_xml – sequence: 1
  fullname: ZHANG Shuheng
– sequence: 2
  fullname: ZHAI Ruping
– sequence: 3
  fullname: LIU Yongkai
Author_xml – sequence: 1
  fullname: 张书衡
– sequence: 2
  fullname: 翟茹萍
– sequence: 3
  fullname: 刘永凯
BookMark eNo9j0tLw0AcxPdQwVr7LTwJif_dzSbdoxRfWPCi4K1sk2xpkBRcxcdJQUqLD0SQQiutgjdBEQ9ihPhlukn7LYwonmb4DcwwMygXNkMfoTkMJiYU2EJgNpQKTQyADQb2tkmA0CwzgeZQ_h9Po6JSjRowTB0GjpVH63oYjaKryUlv9PWgh0N9czHpv4_jOPPjwaW-bqedDx2fpr2zpHs_iqLkLpr0W2n8mL5-6sH5-KWl20_pczd5u51FU1LsKL_4pwW0tby0WV41Khsra-XFiqEwMGpg4UrOBMd-iYPlgl2jhFPPkYJaPithKgknLviecBlwR9oe8aSbQexzZtuYFtD8b--BCKUI69Wgub8bZovVw726e-QdB-rnPiYAlH4DjzhwGg
ClassificationCodes TN911
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2023.12.03
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Identification of UAV swarm type based on fusion features of communication and radar domain
EndPage 3742
ExternalDocumentID xtgcydzjs202312003
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (61971221)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1053-1acf95a91e8904c06b3293d7fa34e5813f292c0edac5097f6d2dfcf291e956613
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 无人机集群类型识别
高阶累积量
unmanned aerial vehicle(UAV)swarm type identification
特征选择
瞬时特征统计量
雷达航迹
high-order cumulant
instantaneous feature statistics
radar trajectory
feature selection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1053-1acf95a91e8904c06b3293d7fa34e5813f292c0edac5097f6d2dfcf291e956613
PageCount 9
ParticipantIDs wanfang_journals_xtgcydzjs202312003
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2023
Publisher 南京航空航天大学电子信息工程学院,江苏南京 210016
Publisher_xml – name: 南京航空航天大学电子信息工程学院,江苏南京 210016
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.4202938
Snippet TN911; 目前已有无人机类型识别算法仅通过通信域或雷达域的信号特征实现单个无人机类型的识别,存在识别准确率低等问题.提出了一种基于通信信号和雷达信号融合特征的无人机...
SourceID wanfang
SourceType Aggregation Database
StartPage 3734
Title 基于通信域和雷达域融合特征的无人机集群类型识别算法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202312003
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-506X
  databaseCode: ADMLS
  dateStart: 20180801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620160
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcIgJiB7EJ74JaJ9k4_T0PLqPPbuzBDVeTCC3MNmZiXhYwWxAc1KQEPGBCBJIJFHwJijiQVxh_ZlsNvkEb1bVPDEhRGEYeoqaes50VTX9MIyr3MK9bqA6cbwwqkHEj2sqjKNaZEUygZCbuLRP98Rtd3zKvjHtTA8d-l2ZtbTQmR1rLe65ruR_vAow8Cuukv0HzxZEAQBt8C_cwcNwP5CPWeAw1WS-ZoGNdxmwQNHchRTSZJpnOHBhw2KyjjjKZ77HAsn8AK8SRzIVMNkgiMmkZIHHpGK-QghgSo4QoC9tFrhMeUybGXcUAyB1ahAL6SIyvKVtanDm-0QZ6PjISzcJx0FG2kccHSBNoOMLlp6LmafOREEQBQ_vqUaghXboRUk0QRJJdgAhoe0gjm6gLkBTajROKqQupjQTmXquh2LaJdE4XCWKh9ZMDQQWRHNIMlCjSgW0UJKEN1EMhHg5o2xkxRJ_zVIhrAYpTVbUdeIBAmhSS5E5C4iDttQqb3iZftrdS-PiE3DRb3pPgxWvg8dAdwv-OdKA59qCG5u7hbxm4bZabiWm4aw5x6QDI4ugl-7hmf_cViWECS8bXY6zx3T3s12hFmpXh2ItMhkrmIyhJWmEXZQpRjHx82FnrvUoWrw3j1g83ad3xIKAbA4bI7oxcetOmctj6lsZC4A6QYhy0bSFJ67xsnbAgxBcq6w1HC4gGS5rGweZcBwLSNM0G_JiOnkpF_wwdFyZWtf3UYoW97WTsD1XyUMnjxvHsgJyVKe9wQljaPHuSeNoZVvRU8bN_kZ3s_tq5_Hq5q8P_Y2N_psXO2vft3s9aG-vv-y_Xh48-9HvPRmsPt1aeb_Z7W696-6sLQ16Hwdff_bXn29_Weovfxp8Xtn69va0MdUMJuvjtezQlNo8lErwDYetRDmh4rFUpt0y3VkBGX3kJaGwY0dykVjKaplxFLagVvASF3rlpAVAHiso7bg4Ywy377fjs8YoLoKNLOHYIsSD6fGQHo-rSMVCRCFUKueMK5kpZrJOcX5mt4PPHwjrgnGk_AUvGsOdBwvxJUj3O7OXsw_jD2VawkY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%80%9A%E4%BF%A1%E5%9F%9F%E5%92%8C%E9%9B%B7%E8%BE%BE%E5%9F%9F%E8%9E%8D%E5%90%88%E7%89%B9%E5%BE%81%E7%9A%84%E6%97%A0%E4%BA%BA%E6%9C%BA%E9%9B%86%E7%BE%A4%E7%B1%BB%E5%9E%8B%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%BC%A0%E4%B9%A6%E8%A1%A1&rft.au=%E7%BF%9F%E8%8C%B9%E8%90%8D&rft.au=%E5%88%98%E6%B0%B8%E5%87%AF&rft.date=2023-12-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E5%8D%97%E4%BA%AC+210016&rft.issn=1001-506X&rft.volume=45&rft.issue=12&rft.spage=3734&rft.epage=3742&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2023.12.03&rft.externalDocID=xtgcydzjs202312003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg