Lithium battery state of charge estimation based on adaptive unscented Kalman algorithm

Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly important. Due to the changeable driving state of electric vehicles, the actual working state of lithium-ion batteries is complex, accompanied by vari...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Shu-Dong, Shen, Ying-dong, Zhang, Quan, Dai, Jun-feng, Deng, Qin-wen
Format Conference Proceeding
LanguageEnglish
Published SPIE 06.02.2024
Online AccessGet full text
ISBN9781510672765
1510672761
ISSN0277-786X
DOI10.1117/12.3015702

Cover

Abstract Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly important. Due to the changeable driving state of electric vehicles, the actual working state of lithium-ion batteries is complex, accompanied by various external and internal factors, making it difficult to accurately estimate the state of charge of lithium-ion batteries. This paper proposes an adaptive unscented Kalman filter algorithm for state-of-charge estimation of stackable lithium batteries, which can effectively solve the problem of inaccurate battery model parameters leading to a decrease in estimation accuracy.
AbstractList Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly important. Due to the changeable driving state of electric vehicles, the actual working state of lithium-ion batteries is complex, accompanied by various external and internal factors, making it difficult to accurately estimate the state of charge of lithium-ion batteries. This paper proposes an adaptive unscented Kalman filter algorithm for state-of-charge estimation of stackable lithium batteries, which can effectively solve the problem of inaccurate battery model parameters leading to a decrease in estimation accuracy.
Author Deng, Qin-wen
Dai, Jun-feng
Zhang, Quan
Shen, Ying-dong
Wang, Shu-Dong
Author_xml – sequence: 1
  givenname: Shu-Dong
  surname: Wang
  fullname: Wang, Shu-Dong
  organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China)
– sequence: 2
  givenname: Ying-dong
  surname: Shen
  fullname: Shen, Ying-dong
  organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China)
– sequence: 3
  givenname: Quan
  surname: Zhang
  fullname: Zhang, Quan
  organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China)
– sequence: 4
  givenname: Jun-feng
  surname: Dai
  fullname: Dai, Jun-feng
  organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China)
– sequence: 5
  givenname: Qin-wen
  surname: Deng
  fullname: Deng, Qin-wen
  organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China)
BookMark eNotUF1LwzAUDTjBbe7FX5BnoTM3aZL2UYY6seCLom_ltr3tIusHTSb47424p3M4Xw9nxRbDOBBjNyC2AGDvQG6VAG2FvGCb3GagQRgrrdELthTS2sRm5vOKrbz_EkJm2uZL9lG4cHCnnlcYAs0_3AcMxMeW1wecO-Lkg-sxuHGIEU8NjwQbnIL7Jn4afE1DiOoLHnuMzrEb57jYX7PLFo-eNmdcs_fHh7fdPilen55390XiQWiZQJprbagmqkVjWtPUqaFWVZhFSYFKoaokplqKSkGWVwRpKrMac5krhY1Wa3b7v-snR-U0j7HXuKHzJYjy75YSZHm-Rf0ClwVW_g
ContentType Conference Proceeding
Copyright COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
Copyright_xml – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
DOI 10.1117/12.3015702
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Editor Zhou, Jinghong
Aris, Ishak Bin
Editor_xml – sequence: 1
  givenname: Ishak Bin
  surname: Aris
  fullname: Aris, Ishak Bin
– sequence: 2
  givenname: Jinghong
  surname: Zhou
  fullname: Zhou, Jinghong
EndPage 129794J-5
ExternalDocumentID 10_1117_12_3015702
GroupedDBID 29O
4.4
5SJ
ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
F5P
FQ0
R.2
RNS
RSJ
SPBNH
UT2
ID FETCH-LOGICAL-s1052-149556eceec0d6f6dc46ef3ba8cee31341bb2a4520b3189be14428ca92933ad53
ISBN 9781510672765
1510672761
ISSN 0277-786X
IngestDate Sun Feb 11 04:13:50 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1052-149556eceec0d6f6dc46ef3ba8cee31341bb2a4520b3189be14428ca92933ad53
Notes Conference Location: Guilin, China
Conference Date: 2023-08-25|2023-08-27
ParticipantIDs spie_proceedings_10_1117_12_3015702
PublicationCentury 2000
PublicationDate 20240206
PublicationDateYYYYMMDD 2024-02-06
PublicationDate_xml – month: 2
  year: 2024
  text: 20240206
  day: 6
PublicationDecade 2020
PublicationYear 2024
Publisher SPIE
Publisher_xml – name: SPIE
SSID ssj0028579
Score 2.248702
Snippet Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly...
SourceID spie
SourceType Publisher
StartPage 129794J
Title Lithium battery state of charge estimation based on adaptive unscented Kalman algorithm
URI http://www.dx.doi.org/10.1117/12.3015702
Volume 12979
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOBEeYhXK0vltjLN2omTHKtuEd0uiKqsupxWduzASpBFsDnQX9_xY-NAQQIuUdYbOU7my3jGnvkGoYNccAaORUqiQpptxqIkgkYx4QXMhjnTubY8BSen_HgY90fJKJQ7stklM3lY_H02r-Q9UoU2kKvJkn2DZJtOoQHOQb5wBAnD8Ynx--w8M5jMrib1TUdajsyHjk0OsnHihv5IdwyBhstM7JjJSpmNAaHErY0WqivL4wStP8W1WcgX15fTO-jxJqyx-6Xkq5r0pv7Ojs3RqqoLGA1RrT-axedfdcBcz9W77tcVKbW_1q8y0NgGJvNWbMaPx54nGAp2E9cVevAKy2wHp5mtTBi0K81dtRivIe3vuN-acH0LSV7Q6JYTgB6CJkrSiIZ5q4kmdH5MOu7Ssb9oES2mKei45a-9k8HvxgHPEse9OB-nSfSbP0fX8381z-W5bKHjL-HuJt7vdqJbJsj5GtoMyZn4rIHDB7Sgq3W02uKV3EB_PDKwRwa2yMDTEjtk4IAMbJGB4WSODNwgAztk4AYZm2h49P382zHxFTTIPdjNlBj3N-EaRlREipdcFTHXJZMigyZmuPykpCJOaCRBt-dSg3tNs0KAzcyYUAnbQkvVtNLbCCtVKDD-jfXC40zIHLpkYH7bbzpicgd9Nm9mHL6H-_H_gtl91VV7aCVgcB8tze5q_RFsv5n85EX6D0CSUIo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Lithium+battery+state+of+charge+estimation+based+on+adaptive+unscented+Kalman+algorithm&rft.au=Wang%2C+Shu-Dong&rft.au=Shen%2C+Ying-dong&rft.au=Zhang%2C+Quan&rft.au=Dai%2C+Jun-feng&rft.date=2024-02-06&rft.pub=SPIE&rft.isbn=9781510672765&rft.issn=0277-786X&rft.volume=12979&rft.spage=129794J&rft.epage=129794J-5&rft_id=info:doi/10.1117%2F12.3015702&rft.externalDocID=10_1117_12_3015702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon