Lithium battery state of charge estimation based on adaptive unscented Kalman algorithm
Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly important. Due to the changeable driving state of electric vehicles, the actual working state of lithium-ion batteries is complex, accompanied by vari...
        Saved in:
      
    
          | Main Authors | , , , , | 
|---|---|
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            SPIE
    
        06.02.2024
     | 
| Online Access | Get full text | 
| ISBN | 9781510672765 1510672761  | 
| ISSN | 0277-786X | 
| DOI | 10.1117/12.3015702 | 
Cover
| Abstract | Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly important. Due to the changeable driving state of electric vehicles, the actual working state of lithium-ion batteries is complex, accompanied by various external and internal factors, making it difficult to accurately estimate the state of charge of lithium-ion batteries. This paper proposes an adaptive unscented Kalman filter algorithm for state-of-charge estimation of stackable lithium batteries, which can effectively solve the problem of inaccurate battery model parameters leading to a decrease in estimation accuracy. | 
    
|---|---|
| AbstractList | Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly important. Due to the changeable driving state of electric vehicles, the actual working state of lithium-ion batteries is complex, accompanied by various external and internal factors, making it difficult to accurately estimate the state of charge of lithium-ion batteries. This paper proposes an adaptive unscented Kalman filter algorithm for state-of-charge estimation of stackable lithium batteries, which can effectively solve the problem of inaccurate battery model parameters leading to a decrease in estimation accuracy. | 
    
| Author | Deng, Qin-wen Dai, Jun-feng Zhang, Quan Shen, Ying-dong Wang, Shu-Dong  | 
    
| Author_xml | – sequence: 1 givenname: Shu-Dong surname: Wang fullname: Wang, Shu-Dong organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China) – sequence: 2 givenname: Ying-dong surname: Shen fullname: Shen, Ying-dong organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China) – sequence: 3 givenname: Quan surname: Zhang fullname: Zhang, Quan organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China) – sequence: 4 givenname: Jun-feng surname: Dai fullname: Dai, Jun-feng organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China) – sequence: 5 givenname: Qin-wen surname: Deng fullname: Deng, Qin-wen organization: AVIC Chengdu Aircraft Industrial (Group) Co., Ltd. (China)  | 
    
| BookMark | eNotUF1LwzAUDTjBbe7FX5BnoTM3aZL2UYY6seCLom_ltr3tIusHTSb47424p3M4Xw9nxRbDOBBjNyC2AGDvQG6VAG2FvGCb3GagQRgrrdELthTS2sRm5vOKrbz_EkJm2uZL9lG4cHCnnlcYAs0_3AcMxMeW1wecO-Lkg-sxuHGIEU8NjwQbnIL7Jn4afE1DiOoLHnuMzrEb57jYX7PLFo-eNmdcs_fHh7fdPilen55390XiQWiZQJprbagmqkVjWtPUqaFWVZhFSYFKoaokplqKSkGWVwRpKrMac5krhY1Wa3b7v-snR-U0j7HXuKHzJYjy75YSZHm-Rf0ClwVW_g | 
    
| ContentType | Conference Proceeding | 
    
| Copyright | COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. | 
    
| Copyright_xml | – notice: COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. | 
    
| DOI | 10.1117/12.3015702 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| Editor | Zhou, Jinghong Aris, Ishak Bin  | 
    
| Editor_xml | – sequence: 1 givenname: Ishak Bin surname: Aris fullname: Aris, Ishak Bin – sequence: 2 givenname: Jinghong surname: Zhou fullname: Zhou, Jinghong  | 
    
| EndPage | 129794J-5 | 
    
| ExternalDocumentID | 10_1117_12_3015702 | 
    
| GroupedDBID | 29O 4.4 5SJ ACGFS ALMA_UNASSIGNED_HOLDINGS EBS F5P FQ0 R.2 RNS RSJ SPBNH UT2  | 
    
| ID | FETCH-LOGICAL-s1052-149556eceec0d6f6dc46ef3ba8cee31341bb2a4520b3189be14428ca92933ad53 | 
    
| ISBN | 9781510672765 1510672761  | 
    
| ISSN | 0277-786X | 
    
| IngestDate | Sun Feb 11 04:13:50 EST 2024 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1052-149556eceec0d6f6dc46ef3ba8cee31341bb2a4520b3189be14428ca92933ad53 | 
    
| Notes | Conference Location: Guilin, China Conference Date: 2023-08-25|2023-08-27  | 
    
| ParticipantIDs | spie_proceedings_10_1117_12_3015702 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240206 | 
    
| PublicationDateYYYYMMDD | 2024-02-06 | 
    
| PublicationDate_xml | – month: 2 year: 2024 text: 20240206 day: 6  | 
    
| PublicationDecade | 2020 | 
    
| PublicationYear | 2024 | 
    
| Publisher | SPIE | 
    
| Publisher_xml | – name: SPIE | 
    
| SSID | ssj0028579 | 
    
| Score | 2.248702 | 
    
| Snippet | Lithium-ion batteries are widely used, especially in the field of electric vehicles, so the prediction of the battery state of charge is particularly... | 
    
| SourceID | spie | 
    
| SourceType | Publisher | 
    
| StartPage | 129794J | 
    
| Title | Lithium battery state of charge estimation based on adaptive unscented Kalman algorithm | 
    
| URI | http://www.dx.doi.org/10.1117/12.3015702 | 
    
| Volume | 12979 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4XOBEeYhXK0vltjLN2omTHKtuEd0uiKqsupxWduzASpBFsDnQX9_xY-NAQQIuUdYbOU7my3jGnvkGoYNccAaORUqiQpptxqIkgkYx4QXMhjnTubY8BSen_HgY90fJKJQ7stklM3lY_H02r-Q9UoU2kKvJkn2DZJtOoQHOQb5wBAnD8Ynx--w8M5jMrib1TUdajsyHjk0OsnHihv5IdwyBhstM7JjJSpmNAaHErY0WqivL4wStP8W1WcgX15fTO-jxJqyx-6Xkq5r0pv7Ojs3RqqoLGA1RrT-axedfdcBcz9W77tcVKbW_1q8y0NgGJvNWbMaPx54nGAp2E9cVevAKy2wHp5mtTBi0K81dtRivIe3vuN-acH0LSV7Q6JYTgB6CJkrSiIZ5q4kmdH5MOu7Ssb9oES2mKei45a-9k8HvxgHPEse9OB-nSfSbP0fX8381z-W5bKHjL-HuJt7vdqJbJsj5GtoMyZn4rIHDB7Sgq3W02uKV3EB_PDKwRwa2yMDTEjtk4IAMbJGB4WSODNwgAztk4AYZm2h49P382zHxFTTIPdjNlBj3N-EaRlREipdcFTHXJZMigyZmuPykpCJOaCRBt-dSg3tNs0KAzcyYUAnbQkvVtNLbCCtVKDD-jfXC40zIHLpkYH7bbzpicgd9Nm9mHL6H-_H_gtl91VV7aCVgcB8tze5q_RFsv5n85EX6D0CSUIo | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Lithium+battery+state+of+charge+estimation+based+on+adaptive+unscented+Kalman+algorithm&rft.au=Wang%2C+Shu-Dong&rft.au=Shen%2C+Ying-dong&rft.au=Zhang%2C+Quan&rft.au=Dai%2C+Jun-feng&rft.date=2024-02-06&rft.pub=SPIE&rft.isbn=9781510672765&rft.issn=0277-786X&rft.volume=12979&rft.spage=129794J&rft.epage=129794J-5&rft_id=info:doi/10.1117%2F12.3015702&rft.externalDocID=10_1117_12_3015702 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-786X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-786X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-786X&client=summon |