数据视角下神经网络增量学习支持的涡轮盘多目标优化
TP391; 针对航空发动机涡轮盘多目标优化计算密集、案例需求大、分析费用高的问题,提出一种基于混合样本管理的人工神经网络训练方法,以辅助多目标粒子群优化算法处理这类计算密集问题.通过均匀设计的偏差控制,设计面向混合精度数值仿真的试验表;在误差分析基础上,通过联合优化"虚拟样本噪声强度—隐含层节点数—虚拟样本量",确定混合样本集的构造方法和神经网络拓扑结构,以提高模型的精度和泛化能力;多目标优化过程中,采用基于网格邻域信息的拥挤指标提高Pareto前沿的收敛性、多样性和均匀性;通过遗忘式增量学习提高寻优目标的导向性.以某型涡轮盘的多目标优化设计为例验证该体系的有效性.实验表...
Saved in:
| Published in | 计算机集成制造系统 Vol. 27; no. 8; pp. 2393 - 2404 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
东北大学工商管理学院,辽宁沈阳 110819%东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819
01.08.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1006-5911 |
| DOI | 10.13196/j.cims.2021.08.021 |
Cover
| Abstract | TP391; 针对航空发动机涡轮盘多目标优化计算密集、案例需求大、分析费用高的问题,提出一种基于混合样本管理的人工神经网络训练方法,以辅助多目标粒子群优化算法处理这类计算密集问题.通过均匀设计的偏差控制,设计面向混合精度数值仿真的试验表;在误差分析基础上,通过联合优化"虚拟样本噪声强度—隐含层节点数—虚拟样本量",确定混合样本集的构造方法和神经网络拓扑结构,以提高模型的精度和泛化能力;多目标优化过程中,采用基于网格邻域信息的拥挤指标提高Pareto前沿的收敛性、多样性和均匀性;通过遗忘式增量学习提高寻优目标的导向性.以某型涡轮盘的多目标优化设计为例验证该体系的有效性.实验表明,所提方法在保证涡轮盘多目标优化质量的前提下,能够显著降低设计费用. |
|---|---|
| AbstractList | TP391; 针对航空发动机涡轮盘多目标优化计算密集、案例需求大、分析费用高的问题,提出一种基于混合样本管理的人工神经网络训练方法,以辅助多目标粒子群优化算法处理这类计算密集问题.通过均匀设计的偏差控制,设计面向混合精度数值仿真的试验表;在误差分析基础上,通过联合优化"虚拟样本噪声强度—隐含层节点数—虚拟样本量",确定混合样本集的构造方法和神经网络拓扑结构,以提高模型的精度和泛化能力;多目标优化过程中,采用基于网格邻域信息的拥挤指标提高Pareto前沿的收敛性、多样性和均匀性;通过遗忘式增量学习提高寻优目标的导向性.以某型涡轮盘的多目标优化设计为例验证该体系的有效性.实验表明,所提方法在保证涡轮盘多目标优化质量的前提下,能够显著降低设计费用. |
| Author | 代学武 崔东亮 冯国奇 俞胜平 |
| AuthorAffiliation | 东北大学工商管理学院,辽宁沈阳 110819%东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819 |
| AuthorAffiliation_xml | – name: 东北大学工商管理学院,辽宁沈阳 110819%东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819 |
| Author_FL | DAI Xuewu YU Shengping FENG Guoqi CUI Dongliang |
| Author_FL_xml | – sequence: 1 fullname: FENG Guoqi – sequence: 2 fullname: CUI Dongliang – sequence: 3 fullname: DAI Xuewu – sequence: 4 fullname: YU Shengping |
| Author_xml | – sequence: 1 fullname: 冯国奇 – sequence: 2 fullname: 崔东亮 – sequence: 3 fullname: 代学武 – sequence: 4 fullname: 俞胜平 |
| BookMark | eNotj0FKw0AYhWdRwVp7Am8gJM6fyWTSpRS1QsGNrstMnEiDpmAUpTtB7MJKUVRKK6WK2pXRlSi1t2lm4i2M6OZ9vM33eHMoFzZCidACYBMIlJylwPTqe5FpYQtM7JoZcigPGDsGLQHMomIU1UVWqUMYpXlUUTdv6iJOR2fp6Gr6ca6fBnrc0ZNLPb5LHgbfrU7y8jz9HKrrV9U-0b1T9X6fTmLd7yaPPd2P1bA1_eom7dt5NOPz3UgW_1lAW6srm-WKUd1YWy8vV40IMAWDUexRTLgvsADb5hw8Ibjly21KiPSkQ2wmKPYtKpjAkrqWZDZzOXPAI2BzUkCLf94jHvo83KkFjcP9MFusBVEQeM3m8cHveexmQX4ADPdr1A |
| ClassificationCodes | TP391 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.13196/j.cims.2021.08.021 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Turbine disc multi-objective optimization of incremental neural network learning from data perspective |
| EndPage | 2404 |
| ExternalDocumentID | jsjjczzxt202108021 |
| GrantInformation_xml | – fundername: (辽宁省自然科学基金资助项目); (国家自然科学基金资助项目); (中央高校基本科研业务专项基金资助项目) funderid: (辽宁省自然科学基金资助项目); (国家自然科学基金资助项目); (中央高校基本科研业务专项基金资助项目) |
| GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CDYEO PSX TCJ |
| ID | FETCH-LOGICAL-s1051-750c503afb0b144aa1cbba2fed533ece6347b50f25b7b0e582e7478a761c314a3 |
| ISSN | 1006-5911 |
| IngestDate | Thu May 29 04:00:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | 涡轮盘;混合样本;人工神经网络;多目标粒子群优化算法;增量学习 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1051-750c503afb0b144aa1cbba2fed533ece6347b50f25b7b0e582e7478a761c314a3 |
| PageCount | 12 |
| ParticipantIDs | wanfang_journals_jsjjczzxt202108021 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 计算机集成制造系统 |
| PublicationTitle_FL | Computer Integrated Manufacturing Systems |
| PublicationYear | 2021 |
| Publisher | 东北大学工商管理学院,辽宁沈阳 110819%东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819 |
| Publisher_xml | – name: 东北大学工商管理学院,辽宁沈阳 110819%东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819 |
| SSID | ssib006563755 ssib023646381 ssib001102950 ssib051375755 ssib023167363 ssib036438063 ssib000459500 ssib002258428 |
| Score | 2.3403587 |
| Snippet | TP391; 针对航空发动机涡轮盘多目标优化计算密集、案例需求大、分析费用高的问题,提出一种基于混合样本管理的人工神经网络训练方法,以辅助多目标粒子群优化算法处理这类计算... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 2393 |
| Title | 数据视角下神经网络增量学习支持的涡轮盘多目标优化 |
| URI | https://d.wanfangdata.com.cn/periodical/jsjjczzxt202108021 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1006-5911 databaseCode: ADMLS dateStart: 20200701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib000459500 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB_q9uJFFBW_KWhOZXUmk8wkx8x2liLqxRZ6K_O1asEKdguyN0HswUpRVEorpYrak9WTWGr_m-5u_S98L8nuTrVC9TJkk5df3kd28t6QvDjOFZ57CcMTyzlN_SrLM1ZNmZdXaSJCH9xlzIiCuy1uBeOT7PoUnxqqbJV2Lc0306tZ68BzJf9jVagDu-Ip2X-wbB8UKqAM9oUnWBieh7IxiQMiOYlcLIgxomISC6JCIgJbkJTEjESCiIjEIVGcyBgLUUREXRfGiPRsjayRmBNFNY0kItQ0UAPIgcaRROmxJCOqrgetgSuK3aUigmFNFBDl4eiR4QeaAFloHIZkpgabAkSDURC5ZmkA0Nw92_OYtSCxxgyxIEPNQI1ECpkEKBQWOBFEuhpBIA_Iv6u5BdF8lM7K2N_JrGkDLQdHGOAXeYTKsEwSMZTWKBEVxHBgFQ9IGMIqv6SowBT2kdS1UsEOvlUz6DLyy99cqNff8Wf-JaVBjV5Cq0QVlgYDJG1XFEILZNRk9AUaEUGJGPQl0cC0pi0U94SOtRXBeBTVh2TQ6o_i4Q1PEsoPxwr053Y6KDPj-syZ7soaIdI4yJzQOgEapZEVduzNgv12iXtWDXGmA46gqEPTZCYsgIiarQHeDhJy9K9SllZn_PzFpV2d7fJtUkvY15Qor8W-uXvT-nXgurIDfQZchLTTkN27jwn8qUnqaw7u_5aMfWZuZiZrtR41kQyPqXtHnGEKDoVbcYbV2M0bt8uxkuSl3JcgDJW8fOgcfP9S7A-BlR8ODolTTFFRyo2HFz3AWtlfjOGnL9xBO_egd6hvee6ryWZZQwGv_SmePqY420hm75Q86onjzjEbCo8o81474Qy17p50xjuvv3aeb-5tPN3beLn7_Vn341p3e6m786K7_bb9fu3nwlL786fdrfXOqy-dxcfdlSedb-_2dja7q8vtDyvd1c3O-sLuj-X24ptTzmQ9nqiNV-1tL9U5iPG8KoQuGXf9pJG6qcdYknhZmia0UeQQkRZZActGmHK3QXkapm7BBS3w7o8kDLzM91jin3Yqsw9mizPOCPNZI21AqMN5zmSRC4kbPHIhZE4baS7OOpet5NP2bT43_adlzx2K6rxzdPCGuOBUmg_ni4sQpzTTS3ZG_AK1deYU |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%95%B0%E6%8D%AE%E8%A7%86%E8%A7%92%E4%B8%8B%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%A2%9E%E9%87%8F%E5%AD%A6%E4%B9%A0%E6%94%AF%E6%8C%81%E7%9A%84%E6%B6%A1%E8%BD%AE%E7%9B%98%E5%A4%9A%E7%9B%AE%E6%A0%87%E4%BC%98%E5%8C%96&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E9%9B%86%E6%88%90%E5%88%B6%E9%80%A0%E7%B3%BB%E7%BB%9F&rft.au=%E5%86%AF%E5%9B%BD%E5%A5%87&rft.au=%E5%B4%94%E4%B8%9C%E4%BA%AE&rft.au=%E4%BB%A3%E5%AD%A6%E6%AD%A6&rft.au=%E4%BF%9E%E8%83%9C%E5%B9%B3&rft.date=2021-08-01&rft.pub=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%95%86%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81%E6%B2%88%E9%98%B3+110819%25%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E6%B5%81%E7%A8%8B%E5%B7%A5%E4%B8%9A%E7%BB%BC%E5%90%88%E8%87%AA%E5%8A%A8%E5%8C%96%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E8%BE%BD%E5%AE%81+%E6%B2%88%E9%98%B3+110819&rft.issn=1006-5911&rft.volume=27&rft.issue=8&rft.spage=2393&rft.epage=2404&rft_id=info:doi/10.13196%2Fj.cims.2021.08.021&rft.externalDocID=jsjjczzxt202108021 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjjczzxt%2Fjsjjczzxt.jpg |