基于ISVM-DS的红外多传感器融合识别方法

TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别.针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法.首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 46; no. 5; pp. 1555 - 1560
Main Authors 吴钇达, 王彩云, 王佳宁, 李晓飞
Format Journal Article
LanguageChinese
Published 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854 01.05.2024
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2024.05.10

Cover

Abstract TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别.针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法.首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果.实验结果表明,该方法能有效提高目标识别的准确性.
AbstractList TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别.针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法.首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果.实验结果表明,该方法能有效提高目标识别的准确性.
Abstract_FL In the middle part of the ballistic trajectory,the target is a group of targets,including warheads,decoys,and fragments.Moreover,due to the long distance from the sensor,the infrared imaging of the target is a point target with less available information.Therefore,a single infrared sensor is often difficult to meet the recognition requirements,which means that multiple sensors need to be fused to complete the recognition task.In response to the fusion recognition problem of infrared multiple sensors,a fusion recognition method based on increment support vector machine-Dempster-Shafer(ISVM-DS)evidence theory is proposed.Firstly,the support vector data description(SVDD)model of infrared features of multiple band sensors is trained,and the shell vector is generated and the ISVM model is trained.Then the posterior probability of the ISVM model is used to generate basic probability assignment(BPA).Finally,the D-S evidence theory is used to fuse the BPA of multiple evidences and output classification results.Experimental results show that the proposed method can effectively improve the accuracy of target recognition.
Author 李晓飞
王佳宁
吴钇达
王彩云
AuthorAffiliation 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854
AuthorAffiliation_xml – name: 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854
Author_FL WU Yida
LI Xiaofei
WANG Caiyun
WANG Jianing
Author_FL_xml – sequence: 1
  fullname: WU Yida
– sequence: 2
  fullname: WANG Caiyun
– sequence: 3
  fullname: WANG Jianing
– sequence: 4
  fullname: LI Xiaofei
Author_xml – sequence: 1
  fullname: 吴钇达
– sequence: 2
  fullname: 王彩云
– sequence: 3
  fullname: 王佳宁
– sequence: 4
  fullname: 李晓飞
BookMark eNo9j7tKA0EYRqeIYIx5Cyth13-umy0l3gIRi6jYhZnd2ZBFJuAoXuogaSI2BkxhRFIIFhZWLj5OZpPHcEWx-uAU3-GsoJLpGY3QGgYfEwp8I_W71hofA2CPgzjxCRDmAy9ICZX_8TKqWttVwDENOASsjJibZLPsrtE63ve2WvNxf569uOnITcezr-e8P3GPr4unobsfLN5v3eAtH33mHw-raCmRp1ZX_7aCjna2D-t7XvNgt1HfbHoWAwdPEMWwSnSiIyoDQSRQqrQMMVdRSKmINK3hiAZAhGa1BAdYhhFQxoUiOo4FraD1399LaRJpOu20d3FmCmP76rwTXcc3qf3pLFwY6DfguFwz
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2024.05.10
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Infrared multi-sensor fusion recognition method based on ISVM-DS
EndPage 1560
ExternalDocumentID xtgcydzjs202405010
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1050-62b41bfefec3a762a033bea915bc9336ce381c37026e48f171a9c03456b2edd63
ISSN 1001-506X
IngestDate Thu May 29 04:00:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 弹道目标识别
支持向量机
ballistic target recognition
多传感器融合
support vector machine(SVM)
Dempster-Shafer证据理论
Dempster-Shafer(D-S)evidence theory
multi-sensor fusion
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1050-62b41bfefec3a762a033bea915bc9336ce381c37026e48f171a9c03456b2edd63
PageCount 6
ParticipantIDs wanfang_journals_xtgcydzjs202405010
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2024
Publisher 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854
Publisher_xml – name: 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.4377213
Snippet TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合...
SourceID wanfang
SourceType Aggregation Database
StartPage 1555
Title 基于ISVM-DS的红外多传感器融合识别方法
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202405010
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-506X
  databaseCode: ADMLS
  dateStart: 20180801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620160
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_KFkQP4id-U7DjpaQmM8lk5jjZzVLFemkrvZUkm1Q9rGC3oD0X6UXxYsEerEgPggcPnlz8c7pt_wzfm51sUrpKFZbwMnmZ9_FLZt7Lzgch03kYJELIzMHYwoH-2nWUSn0nUUUeKO55hfn3fP6xmFvyHy4HyxONe7VRS-u9dDbbGDuv5H9QhTLAFWfJ_gOyo0qhAGjAF46AMBxPhTGNA6raNNI09vEo4wcLT-ad1gKNQ6rg3EcCLmiGrNqnSpTE8J4m1S6NBXJCRVidolrSWFIVU9kyJS6VpkS3qTS3w6mO8C6oLVJIRJwON7Es41wjl9MoMkRkK49CqgMsAREyMgoAERttgQ6Mbi2UiCppHIWBUkDJ0fhjq1EElimqGJUhqhbF8KtYQqwUBYDIFtXKukd5Y1h8ZAFVUTSU1FhAcstoJ9AriqNEDYbG9S8lzK_GJZpn2zgIbAitUN1EBdFl2liuDFyjEgMGajgkQusCLf7AM7ykDE4M3o9x4gAPz3jceFm2ZxgugSUoMw6WzePcJ31_EiiBUESlt9AVIT44yi9NEoZHIZvV6ZiUGVzcabiMt-0BcYxd4JrtJUddpP1K_Kw-CMH0dxCNBrXYCaflj-2XoQ0ITMeMMmZHMmYRJlw51w5tPr7y-aveava6s_F8DbncwMyknGShEKxBJnVr_tFCFfhjnFz7cABJBefVDGuG27N5VaKBuyYIViUmgcchcq4SIUjCGS69WMZ0PgTRZpumUvEzZLo06_5fjDIzAbtF0l2tBa2LF8h5m21O6WHTcZFMbDy9RM7V1iC9TPzBbn-__842HIc7m4f9L4O97cHezv6vzwebu4OPX48-vR283zr6_maw9e1g--fBjw9XyFI7XmzOOXYrFWcNEijXESz1vbTIizzjCRiXuJyneaK8IM0U5yLLIXLPeOgykfuy8EIvUZnLIbtKWd7pCH6VNLovuvk1MqVYCghIiH07qc9knkBNMkuyJPeSwkuz6-SutXnFNpVrKyeRvHEqrpvkbPUi3yKN3sv1_DYkAb30jn0CfgOonLjY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EISVM-DS%E7%9A%84%E7%BA%A2%E5%A4%96%E5%A4%9A%E4%BC%A0%E6%84%9F%E5%99%A8%E8%9E%8D%E5%90%88%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%90%B4%E9%92%87%E8%BE%BE&rft.au=%E7%8E%8B%E5%BD%A9%E4%BA%91&rft.au=%E7%8E%8B%E4%BD%B3%E5%AE%81&rft.au=%E6%9D%8E%E6%99%93%E9%A3%9E&rft.date=2024-05-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E8%88%AA%E5%A4%A9%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%E6%B1%9F%E8%8B%8F+210016%25%E5%8C%97%E4%BA%AC%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E6%80%BB%E4%BD%93%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%8C%97%E4%BA%AC+100854&rft.issn=1001-506X&rft.volume=46&rft.issue=5&rft.spage=1555&rft.epage=1560&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.05.10&rft.externalDocID=xtgcydzjs202405010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg