基于ISVM-DS的红外多传感器融合识别方法
TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别.针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法.首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率...
Saved in:
Published in | 系统工程与电子技术 Vol. 46; no. 5; pp. 1555 - 1560 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-506X |
DOI | 10.12305/j.issn.1001-506X.2024.05.10 |
Cover
Abstract | TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别.针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法.首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果.实验结果表明,该方法能有效提高目标识别的准确性. |
---|---|
AbstractList | TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别.针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法.首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果.实验结果表明,该方法能有效提高目标识别的准确性. |
Abstract_FL | In the middle part of the ballistic trajectory,the target is a group of targets,including warheads,decoys,and fragments.Moreover,due to the long distance from the sensor,the infrared imaging of the target is a point target with less available information.Therefore,a single infrared sensor is often difficult to meet the recognition requirements,which means that multiple sensors need to be fused to complete the recognition task.In response to the fusion recognition problem of infrared multiple sensors,a fusion recognition method based on increment support vector machine-Dempster-Shafer(ISVM-DS)evidence theory is proposed.Firstly,the support vector data description(SVDD)model of infrared features of multiple band sensors is trained,and the shell vector is generated and the ISVM model is trained.Then the posterior probability of the ISVM model is used to generate basic probability assignment(BPA).Finally,the D-S evidence theory is used to fuse the BPA of multiple evidences and output classification results.Experimental results show that the proposed method can effectively improve the accuracy of target recognition. |
Author | 李晓飞 王佳宁 吴钇达 王彩云 |
AuthorAffiliation | 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854 |
AuthorAffiliation_xml | – name: 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854 |
Author_FL | WU Yida LI Xiaofei WANG Caiyun WANG Jianing |
Author_FL_xml | – sequence: 1 fullname: WU Yida – sequence: 2 fullname: WANG Caiyun – sequence: 3 fullname: WANG Jianing – sequence: 4 fullname: LI Xiaofei |
Author_xml | – sequence: 1 fullname: 吴钇达 – sequence: 2 fullname: 王彩云 – sequence: 3 fullname: 王佳宁 – sequence: 4 fullname: 李晓飞 |
BookMark | eNo9j7tKA0EYRqeIYIx5Cyth13-umy0l3gIRi6jYhZnd2ZBFJuAoXuogaSI2BkxhRFIIFhZWLj5OZpPHcEWx-uAU3-GsoJLpGY3QGgYfEwp8I_W71hofA2CPgzjxCRDmAy9ICZX_8TKqWttVwDENOASsjJibZLPsrtE63ve2WvNxf569uOnITcezr-e8P3GPr4unobsfLN5v3eAtH33mHw-raCmRp1ZX_7aCjna2D-t7XvNgt1HfbHoWAwdPEMWwSnSiIyoDQSRQqrQMMVdRSKmINK3hiAZAhGa1BAdYhhFQxoUiOo4FraD1399LaRJpOu20d3FmCmP76rwTXcc3qf3pLFwY6DfguFwz |
ClassificationCodes | TP391.41 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12305/j.issn.1001-506X.2024.05.10 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Infrared multi-sensor fusion recognition method based on ISVM-DS |
EndPage | 1560 |
ExternalDocumentID | xtgcydzjs202405010 |
GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
ID | FETCH-LOGICAL-s1050-62b41bfefec3a762a033bea915bc9336ce381c37026e48f171a9c03456b2edd63 |
ISSN | 1001-506X |
IngestDate | Thu May 29 04:00:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | 弹道目标识别 支持向量机 ballistic target recognition 多传感器融合 support vector machine(SVM) Dempster-Shafer证据理论 Dempster-Shafer(D-S)evidence theory multi-sensor fusion |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1050-62b41bfefec3a762a033bea915bc9336ce381c37026e48f171a9c03456b2edd63 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_xtgcydzjs202405010 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 系统工程与电子技术 |
PublicationTitle_FL | Systems Engineering and Electronics |
PublicationYear | 2024 |
Publisher | 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854 |
Publisher_xml | – name: 南京航空航天大学航天学院,南京江苏 210016%北京电子工程总体研究所,北京 100854 |
SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
Score | 2.4377213 |
Snippet | TP391.41; 弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1555 |
Title | 基于ISVM-DS的红外多传感器融合识别方法 |
URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202405010 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-506X databaseCode: ADMLS dateStart: 20180801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620160 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_KFkQP4id-U7DjpaQmM8lk5jjZzVLFemkrvZUkm1Q9rGC3oD0X6UXxYsEerEgPggcPnlz8c7pt_wzfm51sUrpKFZbwMnmZ9_FLZt7Lzgch03kYJELIzMHYwoH-2nWUSn0nUUUeKO55hfn3fP6xmFvyHy4HyxONe7VRS-u9dDbbGDuv5H9QhTLAFWfJ_gOyo0qhAGjAF46AMBxPhTGNA6raNNI09vEo4wcLT-ad1gKNQ6rg3EcCLmiGrNqnSpTE8J4m1S6NBXJCRVidolrSWFIVU9kyJS6VpkS3qTS3w6mO8C6oLVJIRJwON7Es41wjl9MoMkRkK49CqgMsAREyMgoAERttgQ6Mbi2UiCppHIWBUkDJ0fhjq1EElimqGJUhqhbF8KtYQqwUBYDIFtXKukd5Y1h8ZAFVUTSU1FhAcstoJ9AriqNEDYbG9S8lzK_GJZpn2zgIbAitUN1EBdFl2liuDFyjEgMGajgkQusCLf7AM7ykDE4M3o9x4gAPz3jceFm2ZxgugSUoMw6WzePcJ31_EiiBUESlt9AVIT44yi9NEoZHIZvV6ZiUGVzcabiMt-0BcYxd4JrtJUddpP1K_Kw-CMH0dxCNBrXYCaflj-2XoQ0ITMeMMmZHMmYRJlw51w5tPr7y-aveava6s_F8DbncwMyknGShEKxBJnVr_tFCFfhjnFz7cABJBefVDGuG27N5VaKBuyYIViUmgcchcq4SIUjCGS69WMZ0PgTRZpumUvEzZLo06_5fjDIzAbtF0l2tBa2LF8h5m21O6WHTcZFMbDy9RM7V1iC9TPzBbn-__842HIc7m4f9L4O97cHezv6vzwebu4OPX48-vR283zr6_maw9e1g--fBjw9XyFI7XmzOOXYrFWcNEijXESz1vbTIizzjCRiXuJyneaK8IM0U5yLLIXLPeOgykfuy8EIvUZnLIbtKWd7pCH6VNLovuvk1MqVYCghIiH07qc9knkBNMkuyJPeSwkuz6-SutXnFNpVrKyeRvHEqrpvkbPUi3yKN3sv1_DYkAb30jn0CfgOonLjY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EISVM-DS%E7%9A%84%E7%BA%A2%E5%A4%96%E5%A4%9A%E4%BC%A0%E6%84%9F%E5%99%A8%E8%9E%8D%E5%90%88%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E5%90%B4%E9%92%87%E8%BE%BE&rft.au=%E7%8E%8B%E5%BD%A9%E4%BA%91&rft.au=%E7%8E%8B%E4%BD%B3%E5%AE%81&rft.au=%E6%9D%8E%E6%99%93%E9%A3%9E&rft.date=2024-05-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E8%88%AA%E5%A4%A9%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%E6%B1%9F%E8%8B%8F+210016%25%E5%8C%97%E4%BA%AC%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E6%80%BB%E4%BD%93%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%8C%97%E4%BA%AC+100854&rft.issn=1001-506X&rft.volume=46&rft.issue=5&rft.spage=1555&rft.epage=1560&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2024.05.10&rft.externalDocID=xtgcydzjs202405010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |