基于深度学习的捷变相参雷达1-Bit块稀疏重构

TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对稀疏目标信号进行恢复,降低回波数据的位宽,达到简化系统、提升效率的目的 .本文建立了捷变相参雷达信号的块稀疏压缩感知模型,并提出一种基于深度学习的1 Bit块稀疏重建网络B-BAdaLISTA,该重建网络与传统1-Bit硬判决迭代算法比较,在1 Bit采样量化下具有相近的重构性能和更快的收敛速度,同时将块稀疏的结构特征融入到网络结构中,显著提高了雷达目标参数的恢复质量.通过仿真实验定量分析了B-BAdaLISTA重建网络在无...

Full description

Saved in:
Bibliographic Details
Published in系统工程与电子技术 Vol. 44; no. 1; pp. 70 - 75
Main Authors 付蓉, 黄天耀, 刘一民
Format Journal Article
LanguageChinese
Published 清华大学电子工程系,北京100084 2022
Subjects
Online AccessGet full text
ISSN1001-506X
DOI10.12305/j.issn.1001-506X.2022.01.10

Cover

Abstract TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对稀疏目标信号进行恢复,降低回波数据的位宽,达到简化系统、提升效率的目的 .本文建立了捷变相参雷达信号的块稀疏压缩感知模型,并提出一种基于深度学习的1 Bit块稀疏重建网络B-BAdaLISTA,该重建网络与传统1-Bit硬判决迭代算法比较,在1 Bit采样量化下具有相近的重构性能和更快的收敛速度,同时将块稀疏的结构特征融入到网络结构中,显著提高了雷达目标参数的恢复质量.通过仿真实验定量分析了B-BAdaLISTA重建网络在无噪、有噪条件下的恢复能力,验证了算法的有效性.
AbstractList TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对稀疏目标信号进行恢复,降低回波数据的位宽,达到简化系统、提升效率的目的 .本文建立了捷变相参雷达信号的块稀疏压缩感知模型,并提出一种基于深度学习的1 Bit块稀疏重建网络B-BAdaLISTA,该重建网络与传统1-Bit硬判决迭代算法比较,在1 Bit采样量化下具有相近的重构性能和更快的收敛速度,同时将块稀疏的结构特征融入到网络结构中,显著提高了雷达目标参数的恢复质量.通过仿真实验定量分析了B-BAdaLISTA重建网络在无噪、有噪条件下的恢复能力,验证了算法的有效性.
Author 黄天耀
刘一民
付蓉
AuthorAffiliation 清华大学电子工程系,北京100084
AuthorAffiliation_xml – name: 清华大学电子工程系,北京100084
Author_FL LIU Yimin
HUANG Tianyao
FU Rong
Author_FL_xml – sequence: 1
  fullname: FU Rong
– sequence: 2
  fullname: HUANG Tianyao
– sequence: 3
  fullname: LIU Yimin
Author_xml – sequence: 1
  fullname: 付蓉
– sequence: 2
  fullname: 黄天耀
– sequence: 3
  fullname: 刘一民
BookMark eNo9jztLw1Acxe9QwVr7LZyExP99JQYnLb6g4KLgVm5yc0uCpOCt-JhECk41m4rFx1RcHJyiGfppehP7LYwocoYDv-F3OAuolvSSEKElDDYmFPhKbEdaJzYGwBYH59AmQIgNuCI1VP_H86ipdeQDx9Tl4LI6WjPP-TS_KbJ3k4_N23j6-VI-DIphZtL7cvRh0qvZKPuaTLC1EfXN4135elneprPrYfE0WERzShzpsPnXDXSwtbnf2rHae9u7rfW2pTFwsLiruONKIkPhyJAoLgSVjAk3pB7HUjHPd2SguBSB8oiPV4XjScEDX_mCEcloAy3_ek9FokTS7cS9k-OkWuyc9bvBubyI9c9dwFXoN9SKY-k
ClassificationCodes TP957.51
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12305/j.issn.1001-506X.2022.01.10
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL DNN based 1-bit block sparse recovery in frequency agile coherent radar
EndPage 75
ExternalDocumentID xtgcydzjs202201010
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (61801258)
GroupedDBID -0Y
2B.
4A8
5XA
5XJ
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
PSX
TCJ
TGP
U1G
U5S
ID FETCH-LOGICAL-s1050-57f567d2dea6de2f5aa3d44a7e3951df49b6dcf5dacf92b18a69da5cbfba42d43
ISSN 1001-506X
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 捷变相参雷达;块稀疏;1-Bit量化;深度学习
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1050-57f567d2dea6de2f5aa3d44a7e3951df49b6dcf5dacf92b18a69da5cbfba42d43
PageCount 6
ParticipantIDs wanfang_journals_xtgcydzjs202201010
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 系统工程与电子技术
PublicationTitle_FL Systems Engineering and Electronics
PublicationYear 2022
Publisher 清华大学电子工程系,北京100084
Publisher_xml – name: 清华大学电子工程系,北京100084
SSID ssib051375074
ssib002263377
ssib001102898
ssib057620160
ssib023168126
ssib023646287
ssj0042237
Score 2.3471568
Snippet TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对...
SourceID wanfang
SourceType Aggregation Database
StartPage 70
Title 基于深度学习的捷变相参雷达1-Bit块稀疏重构
URI https://d.wanfangdata.com.cn/periodical/xtgcydzjs202201010
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-506X
  databaseCode: ADMLS
  dateStart: 20180801
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620160
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9ANGD-InfFGyOU-cjySR4muxOKWK92EI9lZnJTNXDCnYL2pNIwVPtTcXix6l48eCp2kP_mm7X_he-l5nZWVmRKiwhJC-_vJc3M3kvm-QRMg1ehIIHhTsiE67DGM8dacLEyTnMFeAeZKm9u3P-nphbZHeW-NLY-IOhXUtr3XQmW__juZL_0SqUgV7xlOw_aHYACgWQB_1CChqG9Fg6pjGnapbqiMYMUxnTWFAdUu1hFZREAjNR22aARtHIpXFIFRAzJJZtpAcaOUuVtFWaalmVSJ_GypYAjaQ6hp_n6Edd23ObqhBbRBL3S2BTgY2ghQwRGOBVTMvYbLUBjGQ6oFrbjEb2kVMA4TWUtpxKKw1gQp5XQijXshzZ7gC8RaPBxmTbSFsZJFUBlaqpUViD8gIKo5FCEoCQbkMC4krbuOza4muXljG-6mURv3GfbT0QWtZAVmS2RA-HRnyU_VFZ6_HwWxaqZQfVqjNq4d8i1fiVEwduTeOujco4mFkYG3mDymmijJVSGRxl5JiRqQx8Q27nMsSfGeDPoLB402y1G_j3y8KfdVey52b98SpS4fWB7jiZ9HGpaoJMRu35u_cbWxlNyyFfG-zwIGgOJfsY0cxrbHMMNCD8xpbnXgDGZuM7gN_q422FtRnEwO60kY1qxk-Q6VqsW38Ryh6e6xRJZ2XIzls4Q05XDtpUVL5tZ8nY-sNz5NTQtZ3nye3ep72DvdeHu996ezu9rzsHPz73328cbu72tt71t7_3tl4ebe_-3N-3b0rvw9v-lxf9N1tHrzYPP25cIIuz8UJrzqmCkDir4Hq4Dg8LLkLjmzwRJvcLniSBYSwJ8wCcE1MwlQqTFdwkWaH81JOJUCbhWVqkCfMNCy6Sic6TTn6JTBUBD92cC4mBoYrMlcYLRM4keCxSmNC7TG5Woi9XH5nV5VGFXjkW1VVyEvPlYuE1MtF9upZfB_O5m96oHoRfUL-TlQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%8D%B7%E5%8F%98%E7%9B%B8%E5%8F%82%E9%9B%B7%E8%BE%BE1-Bit%E5%9D%97%E7%A8%80%E7%96%8F%E9%87%8D%E6%9E%84&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E4%BB%98%E8%93%89&rft.au=%E9%BB%84%E5%A4%A9%E8%80%80&rft.au=%E5%88%98%E4%B8%80%E6%B0%91&rft.date=2022&rft.pub=%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E5%8C%97%E4%BA%AC100084&rft.issn=1001-506X&rft.volume=44&rft.issue=1&rft.spage=70&rft.epage=75&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2022.01.10&rft.externalDocID=xtgcydzjs202201010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg