基于深度学习的捷变相参雷达1-Bit块稀疏重构
TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对稀疏目标信号进行恢复,降低回波数据的位宽,达到简化系统、提升效率的目的 .本文建立了捷变相参雷达信号的块稀疏压缩感知模型,并提出一种基于深度学习的1 Bit块稀疏重建网络B-BAdaLISTA,该重建网络与传统1-Bit硬判决迭代算法比较,在1 Bit采样量化下具有相近的重构性能和更快的收敛速度,同时将块稀疏的结构特征融入到网络结构中,显著提高了雷达目标参数的恢复质量.通过仿真实验定量分析了B-BAdaLISTA重建网络在无...
Saved in:
| Published in | 系统工程与电子技术 Vol. 44; no. 1; pp. 70 - 75 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
清华大学电子工程系,北京100084
2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-506X |
| DOI | 10.12305/j.issn.1001-506X.2022.01.10 |
Cover
| Abstract | TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对稀疏目标信号进行恢复,降低回波数据的位宽,达到简化系统、提升效率的目的 .本文建立了捷变相参雷达信号的块稀疏压缩感知模型,并提出一种基于深度学习的1 Bit块稀疏重建网络B-BAdaLISTA,该重建网络与传统1-Bit硬判决迭代算法比较,在1 Bit采样量化下具有相近的重构性能和更快的收敛速度,同时将块稀疏的结构特征融入到网络结构中,显著提高了雷达目标参数的恢复质量.通过仿真实验定量分析了B-BAdaLISTA重建网络在无噪、有噪条件下的恢复能力,验证了算法的有效性. |
|---|---|
| AbstractList | TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对稀疏目标信号进行恢复,降低回波数据的位宽,达到简化系统、提升效率的目的 .本文建立了捷变相参雷达信号的块稀疏压缩感知模型,并提出一种基于深度学习的1 Bit块稀疏重建网络B-BAdaLISTA,该重建网络与传统1-Bit硬判决迭代算法比较,在1 Bit采样量化下具有相近的重构性能和更快的收敛速度,同时将块稀疏的结构特征融入到网络结构中,显著提高了雷达目标参数的恢复质量.通过仿真实验定量分析了B-BAdaLISTA重建网络在无噪、有噪条件下的恢复能力,验证了算法的有效性. |
| Author | 黄天耀 刘一民 付蓉 |
| AuthorAffiliation | 清华大学电子工程系,北京100084 |
| AuthorAffiliation_xml | – name: 清华大学电子工程系,北京100084 |
| Author_FL | LIU Yimin HUANG Tianyao FU Rong |
| Author_FL_xml | – sequence: 1 fullname: FU Rong – sequence: 2 fullname: HUANG Tianyao – sequence: 3 fullname: LIU Yimin |
| Author_xml | – sequence: 1 fullname: 付蓉 – sequence: 2 fullname: 黄天耀 – sequence: 3 fullname: 刘一民 |
| BookMark | eNo9jztLw1Acxe9QwVr7LZyExP99JQYnLb6g4KLgVm5yc0uCpOCt-JhECk41m4rFx1RcHJyiGfppehP7LYwocoYDv-F3OAuolvSSEKElDDYmFPhKbEdaJzYGwBYH59AmQIgNuCI1VP_H86ipdeQDx9Tl4LI6WjPP-TS_KbJ3k4_N23j6-VI-DIphZtL7cvRh0qvZKPuaTLC1EfXN4135elneprPrYfE0WERzShzpsPnXDXSwtbnf2rHae9u7rfW2pTFwsLiruONKIkPhyJAoLgSVjAk3pB7HUjHPd2SguBSB8oiPV4XjScEDX_mCEcloAy3_ek9FokTS7cS9k-OkWuyc9bvBubyI9c9dwFXoN9SKY-k |
| ClassificationCodes | TP957.51 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.12305/j.issn.1001-506X.2022.01.10 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | DNN based 1-bit block sparse recovery in frequency agile coherent radar |
| EndPage | 75 |
| ExternalDocumentID | xtgcydzjs202201010 |
| GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (61801258) |
| GroupedDBID | -0Y 2B. 4A8 5XA 5XJ 92E 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 PSX TCJ TGP U1G U5S |
| ID | FETCH-LOGICAL-s1050-57f567d2dea6de2f5aa3d44a7e3951df49b6dcf5dacf92b18a69da5cbfba42d43 |
| ISSN | 1001-506X |
| IngestDate | Thu May 29 04:00:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 捷变相参雷达;块稀疏;1-Bit量化;深度学习 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1050-57f567d2dea6de2f5aa3d44a7e3951df49b6dcf5dacf92b18a69da5cbfba42d43 |
| PageCount | 6 |
| ParticipantIDs | wanfang_journals_xtgcydzjs202201010 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | 系统工程与电子技术 |
| PublicationTitle_FL | Systems Engineering and Electronics |
| PublicationYear | 2022 |
| Publisher | 清华大学电子工程系,北京100084 |
| Publisher_xml | – name: 清华大学电子工程系,北京100084 |
| SSID | ssib051375074 ssib002263377 ssib001102898 ssib057620160 ssib023168126 ssib023646287 ssj0042237 |
| Score | 2.3471568 |
| Snippet | TP957.51; 近年来,量化压缩感知理论在雷达目标参数估计问题中得到了广泛应用,其主要思想是对采样回波数据进行量化,并将雷达观测模型建模为欠定方程,再利用压缩感知理论对... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 70 |
| Title | 基于深度学习的捷变相参雷达1-Bit块稀疏重构 |
| URI | https://d.wanfangdata.com.cn/periodical/xtgcydzjs202201010 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-506X databaseCode: ADMLS dateStart: 20180801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620160 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9ANGD-InfFGyOU-cjySR4muxOKWK92EI9lZnJTNXDCnYL2pNIwVPtTcXix6l48eCp2kP_mm7X_he-l5nZWVmRKiwhJC-_vJc3M3kvm-QRMg1ehIIHhTsiE67DGM8dacLEyTnMFeAeZKm9u3P-nphbZHeW-NLY-IOhXUtr3XQmW__juZL_0SqUgV7xlOw_aHYACgWQB_1CChqG9Fg6pjGnapbqiMYMUxnTWFAdUu1hFZREAjNR22aARtHIpXFIFRAzJJZtpAcaOUuVtFWaalmVSJ_GypYAjaQ6hp_n6Edd23ObqhBbRBL3S2BTgY2ghQwRGOBVTMvYbLUBjGQ6oFrbjEb2kVMA4TWUtpxKKw1gQp5XQijXshzZ7gC8RaPBxmTbSFsZJFUBlaqpUViD8gIKo5FCEoCQbkMC4krbuOza4muXljG-6mURv3GfbT0QWtZAVmS2RA-HRnyU_VFZ6_HwWxaqZQfVqjNq4d8i1fiVEwduTeOujco4mFkYG3mDymmijJVSGRxl5JiRqQx8Q27nMsSfGeDPoLB402y1G_j3y8KfdVey52b98SpS4fWB7jiZ9HGpaoJMRu35u_cbWxlNyyFfG-zwIGgOJfsY0cxrbHMMNCD8xpbnXgDGZuM7gN_q422FtRnEwO60kY1qxk-Q6VqsW38Ryh6e6xRJZ2XIzls4Q05XDtpUVL5tZ8nY-sNz5NTQtZ3nye3ep72DvdeHu996ezu9rzsHPz73328cbu72tt71t7_3tl4ebe_-3N-3b0rvw9v-lxf9N1tHrzYPP25cIIuz8UJrzqmCkDir4Hq4Dg8LLkLjmzwRJvcLniSBYSwJ8wCcE1MwlQqTFdwkWaH81JOJUCbhWVqkCfMNCy6Sic6TTn6JTBUBD92cC4mBoYrMlcYLRM4keCxSmNC7TG5Woi9XH5nV5VGFXjkW1VVyEvPlYuE1MtF9upZfB_O5m96oHoRfUL-TlQ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%8D%B7%E5%8F%98%E7%9B%B8%E5%8F%82%E9%9B%B7%E8%BE%BE1-Bit%E5%9D%97%E7%A8%80%E7%96%8F%E9%87%8D%E6%9E%84&rft.jtitle=%E7%B3%BB%E7%BB%9F%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF&rft.au=%E4%BB%98%E8%93%89&rft.au=%E9%BB%84%E5%A4%A9%E8%80%80&rft.au=%E5%88%98%E4%B8%80%E6%B0%91&rft.date=2022&rft.pub=%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E5%8C%97%E4%BA%AC100084&rft.issn=1001-506X&rft.volume=44&rft.issue=1&rft.spage=70&rft.epage=75&rft_id=info:doi/10.12305%2Fj.issn.1001-506X.2022.01.10&rft.externalDocID=xtgcydzjs202201010 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxtgcydzjs%2Fxtgcydzjs.jpg |