基于GAN的软测量缺失数据生成方法研究
TP273; 针对工业过程中传感器数据缺失造成软测量模型精度低的问题,提出一种基于生成对抗网络(generative adversarial nets,GAN)的传感器缺失数据生成方法.利用孤立森林算法检测出传感器数据的缺失区域;利用缺失数据属性特征训练条件生成对抗网络(conditional generative adversarial nets,CGAN),在CGAN的输入条件中添加随机序列作为附加信息迭代送入CGAN中生成数据,并借助WGAN-GP(wasserstein generative adversarial nets gradient penalty)成本函数提高网络训练的稳定...
Saved in:
| Published in | 西北工业大学学报 Vol. 42; no. 2; pp. 344 - 352 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Chinese |
| Published |
兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-2758 |
| DOI | 10.1051/jnwpu/20244220344 |
Cover
| Abstract | TP273; 针对工业过程中传感器数据缺失造成软测量模型精度低的问题,提出一种基于生成对抗网络(generative adversarial nets,GAN)的传感器缺失数据生成方法.利用孤立森林算法检测出传感器数据的缺失区域;利用缺失数据属性特征训练条件生成对抗网络(conditional generative adversarial nets,CGAN),在CGAN的输入条件中添加随机序列作为附加信息迭代送入CGAN中生成数据,并借助WGAN-GP(wasserstein generative adversarial nets gradient penalty)成本函数提高网络训练的稳定性;针对缺失区域检测结果引入采样器,将采样的数据填补进缺失区域,形成完整数据集,以提高软测量模型精度.以镍闪速炉温度传感器数据为目标变量进行软测量建模,验证所提出的提高软测量模型精度方法的可行性与有效性. |
|---|---|
| AbstractList | TP273; 针对工业过程中传感器数据缺失造成软测量模型精度低的问题,提出一种基于生成对抗网络(generative adversarial nets,GAN)的传感器缺失数据生成方法.利用孤立森林算法检测出传感器数据的缺失区域;利用缺失数据属性特征训练条件生成对抗网络(conditional generative adversarial nets,CGAN),在CGAN的输入条件中添加随机序列作为附加信息迭代送入CGAN中生成数据,并借助WGAN-GP(wasserstein generative adversarial nets gradient penalty)成本函数提高网络训练的稳定性;针对缺失区域检测结果引入采样器,将采样的数据填补进缺失区域,形成完整数据集,以提高软测量模型精度.以镍闪速炉温度传感器数据为目标变量进行软测量建模,验证所提出的提高软测量模型精度方法的可行性与有效性. |
| Abstract_FL | To solve the problem of low precision in soft sensor models caused by sensor data loss in industrial processes,a new method of sensor data generation based on generative adversarial nets(GAN)is proposed.Firstly,the missing area of sensor data is detected by the isolated forest algorithm.Secondly,conditional generative adversarial nets(CGAN)are training using the attributes of missing data.By adding random sequences to the input conditions of CGAN as additional information,the data is generated iteratively in CGAN.The wasserstein generative adversarial nets gradient penalty(WGAN-GP)cost function is used to improve the stability of network training.Fi-nally,a sampler is introduced to fill the sampled data into the missing region and form a complete data set to im-prove the accuracy of the soft sensing model.In this paper,the temperature sensor data of a nickel flash furnace is used as the target variable for soft-sensing modelling,and the feasibility and effectiveness of the proposed method to improve the accuracy of the soft-sensing model are verified. |
| Author | 王仁杰 蒋栋年 |
| AuthorAffiliation | 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 |
| AuthorAffiliation_xml | – name: 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 |
| Author_FL | JIANG Dongnian WANG Renjie |
| Author_FL_xml | – sequence: 1 fullname: JIANG Dongnian – sequence: 2 fullname: WANG Renjie |
| Author_xml | – sequence: 1 fullname: 蒋栋年 – sequence: 2 fullname: 王仁杰 |
| BookMark | eNotj7tKA0EYRqeIYIx5AB_BYs0_M__uzpQhaBSCNlqHmd3ZYJCJuISsvaAgXorEwiYWNjZeEAUXfRszq2_hilanO-f7FkjFDqwhZInCCgWfNvp2tD9sMGCIjAFHrJAqBQCPhb6YJ_U03dXgSwrIBFYJn03zz_y83dwsro--Ph7cy-n38UXxns9un9zk0Z3dF-OpO7l0V2_ueVLcjIu710Uyl6i91NT_WSM7a6vbrXWvs9XeaDU7XlrapRdxxVGoRMSJLgfECQt0CCiEERSVH8iAKQ7AjKY8EihDYFHIoyjUgqORhtfI8p93pGyibK_bHwwPbFnsZrp3GGeZ_r0JDKjkP9WeWmQ |
| ClassificationCodes | TP273 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1051/jnwpu/20244220344 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Research on the generation method of missing data for soft measurement based on GAN |
| EndPage | 352 |
| ExternalDocumentID | xbgydxxb202402019 |
| GrantInformation_xml | – fundername: (国家自然科学基金); (甘肃省重点研发计划); (兰州市科技计划); (甘肃省杰出青年基金); 兰州理工大学红柳杰出青年人才支持计划与陇原青年英才项目 funderid: (国家自然科学基金); (甘肃省重点研发计划); (兰州市科技计划); (甘肃省杰出青年基金); 兰州理工大学红柳杰出青年人才支持计划与陇原青年英才项目 |
| GroupedDBID | 2B. 4A8 92I 93N AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU PHGZM PHGZT PIMPY PMFND PSX TCJ |
| ID | FETCH-LOGICAL-s1049-c3a348af8dfb000df26b70488e814a56962a3002eb13c849702c73cc7b834e9e3 |
| ISSN | 1000-2758 |
| IngestDate | Thu May 29 04:00:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 软测量模型 生成对抗网络 数据缺失 孤立森林 data missing GAN isolated forest soft sensor model |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1049-c3a348af8dfb000df26b70488e814a56962a3002eb13c849702c73cc7b834e9e3 |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_xbgydxxb202402019 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 西北工业大学学报 |
| PublicationTitle_FL | Journal of Northwestern Polytechnical University |
| PublicationYear | 2024 |
| Publisher | 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 |
| Publisher_xml | – name: 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 |
| SSID | ssib059104284 ssib001129888 ssib046626106 ssib036436219 ssib044765131 ssib044604139 ssib051375596 ssib002258180 |
| Score | 2.423807 |
| Snippet | TP273; 针对工业过程中传感器数据缺失造成软测量模型精度低的问题,提出一种基于生成对抗网络(generative adversarial nets,GAN)的传感器缺失数据生成方法.利用孤立森林算... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 344 |
| Title | 基于GAN的软测量缺失数据生成方法研究 |
| URI | https://d.wanfangdata.com.cn/periodical/xbgydxxb202402019 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1000-2758 databaseCode: M~E dateStart: 20180101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib044765131 providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central issn: 1000-2758 databaseCode: BENPR dateStart: 20180201 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssib059104284 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMCrbCxcEAsRbFcKnVWjWsR376GwTKiRWCLVSb1WSTcppQXRXLD0jgYR4HFoOXMqBCxceQiCxgr-hu_AXzDjJrqE9FC7WxB6P5xHHM4k9cZwrEPQobHMpSzMIULhyVVcoN6eKJkUrKUQXX-jf6IjlVXZ9ja_NHbF3LQ366dVs68BzJf9jVagDu-Ip2X-w7JQoVAAM9oUSLAzloWxMIk5UTEJNIoaljK7pDokCogBmJJIkXCI6JpEgIScyJJEiEPzLGHHCtunIiYa-LcRRnIQeAhJ6RYYOQ_pYI4kyTQpIKUPQR3zA0R6iIaBIKGxnFxnQQDPGUWSbqACBMMBKZFginyUD2jRpGFdYAIyrAbm-KZCeokYOgcMiwJGdkM1QQLzItMAAIfjJhuklEMx-v0HtbTF4RxoOS_ENh6oUH8YQFs9_s9qsdATKRY2UiphiQylrTiRyhUBMtGEJGNPxQchT4RVRimgKc6C2hEQFSFCA39zPb9P8EsCzFhk8zU-DMmV9vQoxas02ai0pfpkfs_JO_DLf776FD56tuPD17t8d4Bkf0COj1Jv2_SOj-DDdeNAdDlPEgmgBk-bOU1gUvYYzH0adm7dm_jR4g9LOZ0c55gaor31wZwWd5QNkTHjMSjPLWCB4a_aZmQkIn63P-tAWQEQ7uwbfFcJhsxOk1lG9E4G3Fo10i5Zs5qBdr0h6G5ZPuHLcOVYFcwu6nJknnLmt2ycdf2939GP0DGbi5NXDn9_fjz8_-fXo-eTbaO_Nx_HOh_HTd5Pt3fHjF-OXX8efdiavtydvv5xyVuNopb3sVr8mcTeBReVmfuIzmRSyW6Ab3S2oSANcDHPZYgkXStAErE7BE_IzyVTg0SzwsyxIpc9ylfunnUbvTi8_4ywozOKWJzn10hbjCZepTCTSLrqMSZGfdS5XQq5Xj57N9X0WPHcYpPPO0dkEu-A0-vcG-UVwqfvppcrwvwGYNZFJ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGAN%E7%9A%84%E8%BD%AF%E6%B5%8B%E9%87%8F%E7%BC%BA%E5%A4%B1%E6%95%B0%E6%8D%AE%E7%94%9F%E6%88%90%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%A5%BF%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E8%92%8B%E6%A0%8B%E5%B9%B4&rft.au=%E7%8E%8B%E4%BB%81%E6%9D%B0&rft.date=2024-04-01&rft.pub=%E5%85%B0%E5%B7%9E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E+730050&rft.issn=1000-2758&rft.volume=42&rft.issue=2&rft.spage=344&rft.epage=352&rft_id=info:doi/10.1051%2Fjnwpu%2F20244220344&rft.externalDocID=xbgydxxb202402019 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxbgydxxb%2Fxbgydxxb.jpg |