基于智能学习的机载海杂波谱参数估计方法
TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建立基于一维LeNet-5的海杂波训练模型,并将仿真和实测海杂波数据输入训练好的模型后对功率谱的中心和宽度进行估计,进而实现海杂波谱特性的直接感知.实验结果表明,与传统方法相比,文中所提方法具有更高的估计精度以及更好的鲁棒性....
Saved in:
| Published in | 西北工业大学学报 Vol. 42; no. 3; pp. 446 - 452 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-2758 |
| DOI | 10.1051/jnwpu/20244230446 |
Cover
| Abstract | TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建立基于一维LeNet-5的海杂波训练模型,并将仿真和实测海杂波数据输入训练好的模型后对功率谱的中心和宽度进行估计,进而实现海杂波谱特性的直接感知.实验结果表明,与传统方法相比,文中所提方法具有更高的估计精度以及更好的鲁棒性. |
|---|---|
| AbstractList | TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建立基于一维LeNet-5的海杂波训练模型,并将仿真和实测海杂波数据输入训练好的模型后对功率谱的中心和宽度进行估计,进而实现海杂波谱特性的直接感知.实验结果表明,与传统方法相比,文中所提方法具有更高的估计精度以及更好的鲁棒性. |
| Abstract_FL | Traditional airborne radar sea clutter suppression methods have a high degree of human participation and large errors in estimating the clutter power spectrum.With the development of modern signal processing and artificial intelligence,deep learning methods are used to study the sea clutter more quickly and intelligently.This paper proposes an airborne radar sea clutter spectrum parameter estimation method based on intelligent learning.It establishes a sea clutter training model based on the one-dimensional LeNet-5.Then the simulated and measured sea clutter data are input into the trained model to estimate the center and width of the power spectrum,thus realizing the direct perception of the sea clutter spectrum characteristics.The experimental results show that the proposed method has a higher estimation accuracy and better robustness than the traditional methods. |
| Author | 王心宝 范一飞 陈明 粟嘉 王伶 陶明亮 |
| AuthorAffiliation | 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051 |
| AuthorAffiliation_xml | – name: 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051 |
| Author_FL | WANG Ling WANG Xinbao CHEN Ming SU Jia TAO Mingliang FAN Yifei |
| Author_FL_xml | – sequence: 1 fullname: FAN Yifei – sequence: 2 fullname: WANG Xinbao – sequence: 3 fullname: SU Jia – sequence: 4 fullname: TAO Mingliang – sequence: 5 fullname: CHEN Ming – sequence: 6 fullname: WANG Ling |
| Author_xml | – sequence: 1 fullname: 范一飞 – sequence: 2 fullname: 王心宝 – sequence: 3 fullname: 粟嘉 – sequence: 4 fullname: 陶明亮 – sequence: 5 fullname: 陈明 – sequence: 6 fullname: 王伶 |
| BookMark | eNotj81Kw0AcxPdQwVr7AD6Ch9j__nc33R6l-AUFL3oum01SLLIVQ2m8Vs96qqAofhy8KZEi0mDeJlnzGEb0NMMc5jezQmpmZAJC1ihsUBC0NTSTk3ELATlHBpy7NVKnAOBgW8hl0oyiIw9EhwJHyeukUzykeXppb9LyPCteX_LF4_fthb1LyyyzH5_2fmrnz2XyXlxN7SzJv5Ly7cleL-x8tkqWQnUcBc1_bZDD7a2D7q7T29_Z6272nKhiSEcGMtTAtYsKpebC5yA5Coba9aQCobULga9oyEOFlasS5VW7WRspxwBZg6z_9U6UCZUZ9Iej8ampiP3YG5z5cez9ngUGINkPHPtg9g |
| ClassificationCodes | TN957.51 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1051/jnwpu/20244230446 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | An airborne radar sea clutter spectrum parameters estimation method based on intelligent learning |
| EndPage | 452 |
| ExternalDocumentID | xbgydxxb202403008 |
| GrantInformation_xml | – fundername: (国家自然科学基金); (航空科学基金) funderid: (国家自然科学基金); (航空科学基金) |
| GroupedDBID | 2B. 4A8 92I 93N AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU PHGZM PHGZT PIMPY PMFND PSX TCJ |
| ID | FETCH-LOGICAL-s1048-8e8fc04c62a28c45d40842532c6b8a05cc60eda1f4fa20ed05cab044372142e23 |
| ISSN | 1000-2758 |
| IngestDate | Thu May 29 04:00:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 海杂波 deep learning 参数估计 深度学习 doppler characteristics parameters estimation 多普勒谱特性 sea clutter |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1048-8e8fc04c62a28c45d40842532c6b8a05cc60eda1f4fa20ed05cab044372142e23 |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_xbgydxxb202403008 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 西北工业大学学报 |
| PublicationTitle_FL | Journal of Northwestern Polytechnical University |
| PublicationYear | 2024 |
| Publisher | 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051 |
| Publisher_xml | – name: 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051 |
| SSID | ssib059104284 ssib001129888 ssib046626106 ssib036436219 ssib044765131 ssib044604139 ssib051375596 ssib002258180 |
| Score | 2.415383 |
| Snippet | TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 446 |
| Title | 基于智能学习的机载海杂波谱参数估计方法 |
| URI | https://d.wanfangdata.com.cn/periodical/xbgydxxb202403008 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1000-2758 databaseCode: M~E dateStart: 20180101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib044765131 providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central issn: 1000-2758 databaseCode: BENPR dateStart: 20180201 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssib059104284 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEI6q7YULAgHirQrhUxWaOI5jH51sVhWHCqFW6q3avMppQXQrSo-FM5yKBALxOHADFVUIdUX_TRv2ZzDjeBur5VB6ibz22PP4vJlxYk8c565fgc9jeeXyqqQu84Xn9quycHNGvZIW4KGb3RYLfH6J3V8Ol6c6hbVraX2Y3cs3_3mu5CyoQh3giqdk_wPZo0GhAsqAL1wBYbieCmOShkT2SKxIyvAqUpJyIqWuEUQEJO4ijeoSxTWNJMojaUQkEDNNnBhioERiTuKQxJFu6hJBdU1AFNU0Hol9HFD0TJMMsRJHTnRBEJUS5esmjuya7s0XLidBsCaDjj09VEJkhAVgCpU4lEDxUGxGVGTJf1TgRCggnkwWrWuC6ja9BQgCigLbtCWJ0Doi1px6mjZEWWXXJokp2hOtCqPItkVqo2rO2JIae6vUfmhCWbu5S0_zs-oJ8DCEoamRjX17xqzCJ6pnEWvRAB6amDJA0vK1BABlhZzFNEsRUIcGYdU1MsnUAj9E7ZqCEsgSBwILcgvzRrjIoIE217NJaa4wO1BckDs20wqahJyIqLsLGCExswlsgQpoAWQza3wNxXEhZ_FVkUke3PhSTFpAoyYz_8TZMmrdVALLczLzJLoJwliT1viEfwcG6N8Hz56s41EmQJbhWw12LJu6js82stXnxcZGhlTgyjAjwDQF3-91nOk4XXjwsF02QNAr7LR9NMQUCJPfAUTtnLZpD4Gdx6xsuoxFPPTbt-mMc8qt3QvQFsHCvf0NITqs-vWGl4mNJhsuQn9Oazdn6abPEw6q_mDVCn0XLzjnzZp1RjU3oIvO1OajS448_Dg6GL2q347GL_YPv3092Pv0593L-v1ovL9f__xVf9iqd7-Md34cvt6qt3cOfu-Mv3-u3-zVu9uXnaVeupjMu-Y7LO4aCCpcUYoq91jOaZ-KnIUF8_DlfUBznom-F-Y598qi71es6sMdvoCaPloliDCfY0mDK05n8HhQXnVmeBlBdBUUnswgRMtCERUyq_ySyzyDxYt_zbljVF0x99m1lRM4Xj8N0Q3nXPvHv-l0hk_Xy1uwfhhmtw38fwGyu8k0 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%99%BA%E8%83%BD%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%9C%BA%E8%BD%BD%E6%B5%B7%E6%9D%82%E6%B3%A2%E8%B0%B1%E5%8F%82%E6%95%B0%E4%BC%B0%E8%AE%A1%E6%96%B9%E6%B3%95&rft.jtitle=%E8%A5%BF%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E8%8C%83%E4%B8%80%E9%A3%9E&rft.au=%E7%8E%8B%E5%BF%83%E5%AE%9D&rft.au=%E7%B2%9F%E5%98%89&rft.au=%E9%99%B6%E6%98%8E%E4%BA%AE&rft.date=2024-06-01&rft.pub=%E8%A5%BF%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89+710072%25%E6%9D%AD%E5%B7%9E%E6%B5%B7%E5%BA%B7%E5%A8%81%E8%A7%86%E6%95%B0%E5%AD%97%E6%8A%80%E6%9C%AF%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F%E6%9D%AD%E5%B7%9E+310051&rft.issn=1000-2758&rft.volume=42&rft.issue=3&rft.spage=446&rft.epage=452&rft_id=info:doi/10.1051%2Fjnwpu%2F20244230446&rft.externalDocID=xbgydxxb202403008 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxbgydxxb%2Fxbgydxxb.jpg |