基于智能学习的机载海杂波谱参数估计方法

TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建立基于一维LeNet-5的海杂波训练模型,并将仿真和实测海杂波数据输入训练好的模型后对功率谱的中心和宽度进行估计,进而实现海杂波谱特性的直接感知.实验结果表明,与传统方法相比,文中所提方法具有更高的估计精度以及更好的鲁棒性....

Full description

Saved in:
Bibliographic Details
Published in西北工业大学学报 Vol. 42; no. 3; pp. 446 - 452
Main Authors 范一飞, 王心宝, 粟嘉, 陶明亮, 陈明, 王伶
Format Journal Article
LanguageChinese
Published 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051 01.06.2024
Subjects
Online AccessGet full text
ISSN1000-2758
DOI10.1051/jnwpu/20244230446

Cover

Abstract TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建立基于一维LeNet-5的海杂波训练模型,并将仿真和实测海杂波数据输入训练好的模型后对功率谱的中心和宽度进行估计,进而实现海杂波谱特性的直接感知.实验结果表明,与传统方法相比,文中所提方法具有更高的估计精度以及更好的鲁棒性.
AbstractList TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建立基于一维LeNet-5的海杂波训练模型,并将仿真和实测海杂波数据输入训练好的模型后对功率谱的中心和宽度进行估计,进而实现海杂波谱特性的直接感知.实验结果表明,与传统方法相比,文中所提方法具有更高的估计精度以及更好的鲁棒性.
Abstract_FL Traditional airborne radar sea clutter suppression methods have a high degree of human participation and large errors in estimating the clutter power spectrum.With the development of modern signal processing and artificial intelligence,deep learning methods are used to study the sea clutter more quickly and intelligently.This paper proposes an airborne radar sea clutter spectrum parameter estimation method based on intelligent learning.It establishes a sea clutter training model based on the one-dimensional LeNet-5.Then the simulated and measured sea clutter data are input into the trained model to estimate the center and width of the power spectrum,thus realizing the direct perception of the sea clutter spectrum characteristics.The experimental results show that the proposed method has a higher estimation accuracy and better robustness than the traditional methods.
Author 王心宝
范一飞
陈明
粟嘉
王伶
陶明亮
AuthorAffiliation 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051
AuthorAffiliation_xml – name: 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051
Author_FL WANG Ling
WANG Xinbao
CHEN Ming
SU Jia
TAO Mingliang
FAN Yifei
Author_FL_xml – sequence: 1
  fullname: FAN Yifei
– sequence: 2
  fullname: WANG Xinbao
– sequence: 3
  fullname: SU Jia
– sequence: 4
  fullname: TAO Mingliang
– sequence: 5
  fullname: CHEN Ming
– sequence: 6
  fullname: WANG Ling
Author_xml – sequence: 1
  fullname: 范一飞
– sequence: 2
  fullname: 王心宝
– sequence: 3
  fullname: 粟嘉
– sequence: 4
  fullname: 陶明亮
– sequence: 5
  fullname: 陈明
– sequence: 6
  fullname: 王伶
BookMark eNotj81Kw0AcxPdQwVr7AD6Ch9j__nc33R6l-AUFL3oum01SLLIVQ2m8Vs96qqAofhy8KZEi0mDeJlnzGEb0NMMc5jezQmpmZAJC1ihsUBC0NTSTk3ELATlHBpy7NVKnAOBgW8hl0oyiIw9EhwJHyeukUzykeXppb9LyPCteX_LF4_fthb1LyyyzH5_2fmrnz2XyXlxN7SzJv5Ly7cleL-x8tkqWQnUcBc1_bZDD7a2D7q7T29_Z6272nKhiSEcGMtTAtYsKpebC5yA5Coba9aQCobULga9oyEOFlasS5VW7WRspxwBZg6z_9U6UCZUZ9Iej8ampiP3YG5z5cez9ngUGINkPHPtg9g
ClassificationCodes TN957.51
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1051/jnwpu/20244230446
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL An airborne radar sea clutter spectrum parameters estimation method based on intelligent learning
EndPage 452
ExternalDocumentID xbgydxxb202403008
GrantInformation_xml – fundername: (国家自然科学基金); (航空科学基金)
  funderid: (国家自然科学基金); (航空科学基金)
GroupedDBID 2B.
4A8
92I
93N
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
PHGZM
PHGZT
PIMPY
PMFND
PSX
TCJ
ID FETCH-LOGICAL-s1048-8e8fc04c62a28c45d40842532c6b8a05cc60eda1f4fa20ed05cab044372142e23
ISSN 1000-2758
IngestDate Thu May 29 04:00:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 海杂波
deep learning
参数估计
深度学习
doppler characteristics
parameters estimation
多普勒谱特性
sea clutter
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1048-8e8fc04c62a28c45d40842532c6b8a05cc60eda1f4fa20ed05cab044372142e23
PageCount 7
ParticipantIDs wanfang_journals_xbgydxxb202403008
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 西北工业大学学报
PublicationTitle_FL Journal of Northwestern Polytechnical University
PublicationYear 2024
Publisher 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051
Publisher_xml – name: 西北工业大学电子信息学院,陕西西安 710072%杭州海康威视数字技术股份有限公司,浙江杭州 310051
SSID ssib059104284
ssib001129888
ssib046626106
ssib036436219
ssib044765131
ssib044604139
ssib051375596
ssib002258180
Score 2.415383
Snippet TN957.51; 传统机载雷达海杂波的抑制方法在估计杂波功率谱时存在人工参与度高、误差大等问题,导致环境适应性较差.为此,提出一种基于智能学习的机载海杂波谱参数估计方法,建...
SourceID wanfang
SourceType Aggregation Database
StartPage 446
Title 基于智能学习的机载海杂波谱参数估计方法
URI https://d.wanfangdata.com.cn/periodical/xbgydxxb202403008
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1000-2758
  databaseCode: M~E
  dateStart: 20180101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib044765131
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1000-2758
  databaseCode: BENPR
  dateStart: 20180201
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssib059104284
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEI6q7YULAgHirQrhUxWaOI5jH51sVhWHCqFW6q3avMppQXQrSo-FM5yKBALxOHADFVUIdUX_TRv2ZzDjeBur5VB6ibz22PP4vJlxYk8c565fgc9jeeXyqqQu84Xn9quycHNGvZIW4KGb3RYLfH6J3V8Ol6c6hbVraX2Y3cs3_3mu5CyoQh3giqdk_wPZo0GhAsqAL1wBYbieCmOShkT2SKxIyvAqUpJyIqWuEUQEJO4ijeoSxTWNJMojaUQkEDNNnBhioERiTuKQxJFu6hJBdU1AFNU0Hol9HFD0TJMMsRJHTnRBEJUS5esmjuya7s0XLidBsCaDjj09VEJkhAVgCpU4lEDxUGxGVGTJf1TgRCggnkwWrWuC6ja9BQgCigLbtCWJ0Doi1px6mjZEWWXXJokp2hOtCqPItkVqo2rO2JIae6vUfmhCWbu5S0_zs-oJ8DCEoamRjX17xqzCJ6pnEWvRAB6amDJA0vK1BABlhZzFNEsRUIcGYdU1MsnUAj9E7ZqCEsgSBwILcgvzRrjIoIE217NJaa4wO1BckDs20wqahJyIqLsLGCExswlsgQpoAWQza3wNxXEhZ_FVkUke3PhSTFpAoyYz_8TZMmrdVALLczLzJLoJwliT1viEfwcG6N8Hz56s41EmQJbhWw12LJu6js82stXnxcZGhlTgyjAjwDQF3-91nOk4XXjwsF02QNAr7LR9NMQUCJPfAUTtnLZpD4Gdx6xsuoxFPPTbt-mMc8qt3QvQFsHCvf0NITqs-vWGl4mNJhsuQn9Oazdn6abPEw6q_mDVCn0XLzjnzZp1RjU3oIvO1OajS448_Dg6GL2q347GL_YPv3092Pv0593L-v1ovL9f__xVf9iqd7-Md34cvt6qt3cOfu-Mv3-u3-zVu9uXnaVeupjMu-Y7LO4aCCpcUYoq91jOaZ-KnIUF8_DlfUBznom-F-Y598qi71es6sMdvoCaPloliDCfY0mDK05n8HhQXnVmeBlBdBUUnswgRMtCERUyq_ySyzyDxYt_zbljVF0x99m1lRM4Xj8N0Q3nXPvHv-l0hk_Xy1uwfhhmtw38fwGyu8k0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%99%BA%E8%83%BD%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%9C%BA%E8%BD%BD%E6%B5%B7%E6%9D%82%E6%B3%A2%E8%B0%B1%E5%8F%82%E6%95%B0%E4%BC%B0%E8%AE%A1%E6%96%B9%E6%B3%95&rft.jtitle=%E8%A5%BF%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E8%8C%83%E4%B8%80%E9%A3%9E&rft.au=%E7%8E%8B%E5%BF%83%E5%AE%9D&rft.au=%E7%B2%9F%E5%98%89&rft.au=%E9%99%B6%E6%98%8E%E4%BA%AE&rft.date=2024-06-01&rft.pub=%E8%A5%BF%E5%8C%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89+710072%25%E6%9D%AD%E5%B7%9E%E6%B5%B7%E5%BA%B7%E5%A8%81%E8%A7%86%E6%95%B0%E5%AD%97%E6%8A%80%E6%9C%AF%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F%E6%9D%AD%E5%B7%9E+310051&rft.issn=1000-2758&rft.volume=42&rft.issue=3&rft.spage=446&rft.epage=452&rft_id=info:doi/10.1051%2Fjnwpu%2F20244230446&rft.externalDocID=xbgydxxb202403008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxbgydxxb%2Fxbgydxxb.jpg