基于图卷积深度强化学习的协同空战机动决策方法

TG142.71; 针对多无人机智能协同空战对抗决策问题,提出了一种基于长短期记忆与竞争图卷积深度强化学习的多机协同空战机动对抗决策方法.首先,对多机协同空战对抗问题进行描述;其次,在竞争Q网络中,引入长短期记忆网络用于处理带有强时序相关性的空战信息,接着,搭建图卷积网络作为多机之间的通信基础,提出基于长短期记忆与竞争图卷积深度强化学习算法的协同空战训练框架,并对协同空战决策训练算法进行了设计.二对一空战仿真结果验证了本文所提出的协同智能对抗决策方法的有效性,其具有决策速度快、学习过程稳定的特点以及适应空战环境快速变化下的协同策略学习能力....

Full description

Saved in:
Bibliographic Details
Published in工程科学学报 Vol. 46; no. 7; pp. 1227 - 1236
Main Authors 欧洋, 郭正玉, 罗德林, 缪克华
Format Journal Article
LanguageChinese
Published 空基信息感知与融合全国重点实验室,洛阳 471000 01.07.2024
厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102
Subjects
Online AccessGet full text
ISSN2095-9389
DOI10.13374/j.issn2095-9389.2023.09.25.004

Cover

Abstract TG142.71; 针对多无人机智能协同空战对抗决策问题,提出了一种基于长短期记忆与竞争图卷积深度强化学习的多机协同空战机动对抗决策方法.首先,对多机协同空战对抗问题进行描述;其次,在竞争Q网络中,引入长短期记忆网络用于处理带有强时序相关性的空战信息,接着,搭建图卷积网络作为多机之间的通信基础,提出基于长短期记忆与竞争图卷积深度强化学习算法的协同空战训练框架,并对协同空战决策训练算法进行了设计.二对一空战仿真结果验证了本文所提出的协同智能对抗决策方法的有效性,其具有决策速度快、学习过程稳定的特点以及适应空战环境快速变化下的协同策略学习能力.
AbstractList TG142.71; 针对多无人机智能协同空战对抗决策问题,提出了一种基于长短期记忆与竞争图卷积深度强化学习的多机协同空战机动对抗决策方法.首先,对多机协同空战对抗问题进行描述;其次,在竞争Q网络中,引入长短期记忆网络用于处理带有强时序相关性的空战信息,接着,搭建图卷积网络作为多机之间的通信基础,提出基于长短期记忆与竞争图卷积深度强化学习算法的协同空战训练框架,并对协同空战决策训练算法进行了设计.二对一空战仿真结果验证了本文所提出的协同智能对抗决策方法的有效性,其具有决策速度快、学习过程稳定的特点以及适应空战环境快速变化下的协同策略学习能力.
Abstract_FL ABSTRACT The effective implementation of multi-unmanned aerial vehicle (UAV) decision making and improvement in the efficiency of coordinated mission execution are currently the top priorities of air combat research. To solve the problem of multi-UAV cooperative air combat maneuvering confrontation,a multi-UAV cooperative air combat maneuvering confrontation decision-making method based on long short-term memory (LSTM) and convolutional deep reinforcement learning of competitive graphs is proposed. First,the problem of multi-UAV cooperative air combat maneuvering confrontation is described. Second,in the deep dueling Q network,the LSTM network is introduced to process air combat information with a strong temporal correlation. Further,a graph convolutional network is built as a communication basis between multiple UAVs and a cooperative air combat training framework based on LSTM,and a convolutional deep reinforcement learning algorithm for the dueling graph is proposed to improve the convergence. In the proposed method,the communication problem between UAVs is transformed into a graph model,where each UAV is regarded as a node,and the observation state of the UAV is regarded as the attribute of a node. The convolutional layer captures the cooperative relationship between each node,and communication between UAVs is realized through information sharing. Subsequently,the extracted air combat feature information with time sequence is inputted into the LSTM and deep dueling Q networks for evaluating action values. The LSTM network can process sequence information and encode historical states into the hidden state of the network so that the network can better capture temporal dependencies and thus predict the value function of the current state better. The simulation resultsshow that when the opponent adopts a nonmaneuvering strategy,the UAV formation developed using the proposed method as the core decision-making strategy can learn a reasonable maneuvering strategy and cooperate to a certain extent when facing an opponent using a fixed strategy. This proves the effectiveness of the algorithm in multi-UAV collaborative air combat maneuvering confrontation problems,enabling UAV formations to achieve teamwork and improve air combat efficiency. In a two-on-one air combat situation,the greedy algorithm is used as the decision-making strategy of the enemy aircraft. The results of simulation comparison experiments show that when faced with opponents using certain rules and strategies,the red team formation can learn reasonable maneuver confrontation strategies and cooperate in the decision-making process to form certain air combat tactics,which improve the combat efficiency of the red team. Compared with the basic method,the proposed method exhibits a more stable learning process and faster decision-making speed for UAV cooperative air combat.
Author 欧洋
缪克华
罗德林
郭正玉
AuthorAffiliation 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102;空基信息感知与融合全国重点实验室,洛阳 471000
AuthorAffiliation_xml – name: 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102;空基信息感知与融合全国重点实验室,洛阳 471000
Author_FL GUO Zhengyu
MIAO Kehua
LUO Delin
OU Yang
Author_FL_xml – sequence: 1
  fullname: OU Yang
– sequence: 2
  fullname: GUO Zhengyu
– sequence: 3
  fullname: LUO Delin
– sequence: 4
  fullname: MIAO Kehua
Author_xml – sequence: 1
  fullname: 欧洋
– sequence: 2
  fullname: 郭正玉
– sequence: 3
  fullname: 罗德林
– sequence: 4
  fullname: 缪克华
BookMark eNo9j8tKw0AYhWdRwVr7HOIi8Z9bJ7PU4g0KbnRdcpmRRknBQewDiIi02o1BVNBV1UUR6aI0iE_TSV7DiOLqg3PgO5wlVEm6iUJoBYOLKRVsLXY7xiQEJHck9aRLgFAXSnIXgFVQ9b9aRHVjOgFwTAWWBKpowz5l8-zaPnzZwbR4ec-nHzYb2c_M9lM7Hs1nz8X9uR3c2GG_eMvyy7v8MbNXr_ZiUozTPJ3lk9tltKD9Y6Pqf6yhg63N_eaO09rb3m2utxyDgQkn1BDpUBEBoVaaK-UB1VKEzCOgggYhPudhQwaeJz3JaRhgJgnVUUQw-8lpDa3-es_8RPvJYTvunp4k5WI7iI_iqNcLyuMMBICg3yyramU
ClassificationCodes TG142.71
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13374/j.issn2095-9389.2023.09.25.004
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Collaborative air combat maneuvering decision-making method based on graph convolutional deep reinforcement learning
EndPage 1236
ExternalDocumentID bjkjdxxb202407007
GrantInformation_xml – fundername: (厦门市科技局?厦门市产学研项目); (空基信息感知与融合全国重点实验室与航空科学基金联合资助项目)
  funderid: (厦门市科技局?厦门市产学研项目); (空基信息感知与融合全国重点实验室与航空科学基金联合资助项目)
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AAITT
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
FA0
GROUPED_DOAJ
JUIAU
PB1
PB6
PSX
Q--
Q-2
R-C
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-s1047-cf0dfce270cfef5ee803f97c4820eb622a55c69b8898953cb14923fdd214c69b3
ISSN 2095-9389
IngestDate Thu May 29 04:07:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 多机协同
maneuver decision making
深度强化学习
空战决策
multi-unmanned aerial vehicle
无人机
air combat decision-making
deep reinforcement learning
multimachine collaboration
机动决策
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1047-cf0dfce270cfef5ee803f97c4820eb622a55c69b8898953cb14923fdd214c69b3
PageCount 10
ParticipantIDs wanfang_journals_bjkjdxxb202407007
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 工程科学学报
PublicationTitle_FL Chinese Journal of Engineering
PublicationYear 2024
Publisher 空基信息感知与融合全国重点实验室,洛阳 471000
厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102
Publisher_xml – name: 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102
– name: 空基信息感知与融合全国重点实验室,洛阳 471000
SSID ssib051371920
ssib023167159
ssj0003313525
ssib022319478
ssib041261352
ssib036435564
Score 2.3989651
Snippet TG142.71;...
SourceID wanfang
SourceType Aggregation Database
StartPage 1227
Title 基于图卷积深度强化学习的协同空战机动决策方法
URI https://d.wanfangdata.com.cn/periodical/bjkjdxxb202407007
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcKkVxBdRVPymiMEHubqbj032cfdujyLoUwt9K7dfSoUTbAulzyIirfpiERX0qepDEelD6SH-An9G9-5vODOb7q1YpApHyE4mM5OZzWaSSyaOc6NwPZN7omhxk_stWf2_m_GWj4FlikxnBZ2Qu3vPn5mTd-bV_MSxn41dSyvLyXS6dui5kv-xKsDArnhK9h8sWxMFAOTBvpCChSE9ko1ZrFjQZVHIYompiQkSsYgypsMizWLNQvh1WezjY-RhESCHPmXaVB2Q2ywgSNihIiAYsNDF6gFQlpag6RILF_GRckDVfWYMCwxmgpogsDCUAb6CkDvEwscUiMcEry6_PPCPSSTAVIRvmIms_IHXkK3O-MRFHbw1CAjbiI60wUuOxiUBMwKrIQpUJoFAXyYYo4ByQEJNMsSkOhA1ZoH-DQXoV-1TJF2llbi5esJlvdO2et8bmmoarMtCj9rgWfOAlqEUNd4lFQCOIaMalAP4WNUby7_SL9q7Qw3UhAMpJ_0CQowVoQhERoMRJJTQr6yGoC6UguUicUtiCCZ3PDJwFy_YFFZDdhizK7lVd9WNMcnjVfQF699guJ1Dx04htKTBE3nULKZBawJDAXNcfJRjt6HezJksPlzMVlcTVC8MIBja4TjX4Mk2Fjjg6w5-qBc0gsdxjMHQcKYF-MaqEblIejC5F6p2vpUntHdwtRr6WUJgMe5RroU94dw8aMntv7eDzuj1i17_fsOdnD3tnLLzwKmw6tRnnIm1B2edqPww2B-8KN_9KDd2R5--Dne_lYOt8vugXN8st7f29z6O3j4pN16Wr9ZHXwbDZ2-G7wfl88_l053R9uZwc2-48_qcM9eNZ9szLXvJSWuJoqSkhZsVac61mxZ5ofLcuKIIdCrBNc8Tn_OeUqkfJAbveVUiTTwMqVhkGfckwsV5Z7L_qJ9fcKY0z5XJMpFylclEwsyj0D2eGZ4pmHQUvYvOddvmBfsRW1r4w3iXjoJ02Tk57kxXnMnlxyv5VXDOl5NrZPNfVPerTw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E5%8D%B7%E7%A7%AF%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%8D%8F%E5%90%8C%E7%A9%BA%E6%88%98%E6%9C%BA%E5%8A%A8%E5%86%B3%E7%AD%96%E6%96%B9%E6%B3%95&rft.jtitle=%E5%B7%A5%E7%A8%8B%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%AC%A7%E6%B4%8B&rft.au=%E9%83%AD%E6%AD%A3%E7%8E%89&rft.au=%E7%BD%97%E5%BE%B7%E6%9E%97&rft.au=%E7%BC%AA%E5%85%8B%E5%8D%8E&rft.date=2024-07-01&rft.pub=%E7%A9%BA%E5%9F%BA%E4%BF%A1%E6%81%AF%E6%84%9F%E7%9F%A5%E4%B8%8E%E8%9E%8D%E5%90%88%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B4%9B%E9%98%B3+471000&rft.issn=2095-9389&rft.volume=46&rft.issue=7&rft.spage=1227&rft.epage=1236&rft_id=info:doi/10.13374%2Fj.issn2095-9389.2023.09.25.004&rft.externalDocID=bjkjdxxb202407007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb%2Fbjkjdxxb.jpg