基于图卷积深度强化学习的协同空战机动决策方法
TG142.71; 针对多无人机智能协同空战对抗决策问题,提出了一种基于长短期记忆与竞争图卷积深度强化学习的多机协同空战机动对抗决策方法.首先,对多机协同空战对抗问题进行描述;其次,在竞争Q网络中,引入长短期记忆网络用于处理带有强时序相关性的空战信息,接着,搭建图卷积网络作为多机之间的通信基础,提出基于长短期记忆与竞争图卷积深度强化学习算法的协同空战训练框架,并对协同空战决策训练算法进行了设计.二对一空战仿真结果验证了本文所提出的协同智能对抗决策方法的有效性,其具有决策速度快、学习过程稳定的特点以及适应空战环境快速变化下的协同策略学习能力....
Saved in:
Published in | 工程科学学报 Vol. 46; no. 7; pp. 1227 - 1236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
空基信息感知与融合全国重点实验室,洛阳 471000
01.07.2024
厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102 |
Subjects | |
Online Access | Get full text |
ISSN | 2095-9389 |
DOI | 10.13374/j.issn2095-9389.2023.09.25.004 |
Cover
Abstract | TG142.71; 针对多无人机智能协同空战对抗决策问题,提出了一种基于长短期记忆与竞争图卷积深度强化学习的多机协同空战机动对抗决策方法.首先,对多机协同空战对抗问题进行描述;其次,在竞争Q网络中,引入长短期记忆网络用于处理带有强时序相关性的空战信息,接着,搭建图卷积网络作为多机之间的通信基础,提出基于长短期记忆与竞争图卷积深度强化学习算法的协同空战训练框架,并对协同空战决策训练算法进行了设计.二对一空战仿真结果验证了本文所提出的协同智能对抗决策方法的有效性,其具有决策速度快、学习过程稳定的特点以及适应空战环境快速变化下的协同策略学习能力. |
---|---|
AbstractList | TG142.71; 针对多无人机智能协同空战对抗决策问题,提出了一种基于长短期记忆与竞争图卷积深度强化学习的多机协同空战机动对抗决策方法.首先,对多机协同空战对抗问题进行描述;其次,在竞争Q网络中,引入长短期记忆网络用于处理带有强时序相关性的空战信息,接着,搭建图卷积网络作为多机之间的通信基础,提出基于长短期记忆与竞争图卷积深度强化学习算法的协同空战训练框架,并对协同空战决策训练算法进行了设计.二对一空战仿真结果验证了本文所提出的协同智能对抗决策方法的有效性,其具有决策速度快、学习过程稳定的特点以及适应空战环境快速变化下的协同策略学习能力. |
Abstract_FL | ABSTRACT The effective implementation of multi-unmanned aerial vehicle (UAV) decision making and improvement in the efficiency of coordinated mission execution are currently the top priorities of air combat research. To solve the problem of multi-UAV cooperative air combat maneuvering confrontation,a multi-UAV cooperative air combat maneuvering confrontation decision-making method based on long short-term memory (LSTM) and convolutional deep reinforcement learning of competitive graphs is proposed. First,the problem of multi-UAV cooperative air combat maneuvering confrontation is described. Second,in the deep dueling Q network,the LSTM network is introduced to process air combat information with a strong temporal correlation. Further,a graph convolutional network is built as a communication basis between multiple UAVs and a cooperative air combat training framework based on LSTM,and a convolutional deep reinforcement learning algorithm for the dueling graph is proposed to improve the convergence. In the proposed method,the communication problem between UAVs is transformed into a graph model,where each UAV is regarded as a node,and the observation state of the UAV is regarded as the attribute of a node. The convolutional layer captures the cooperative relationship between each node,and communication between UAVs is realized through information sharing. Subsequently,the extracted air combat feature information with time sequence is inputted into the LSTM and deep dueling Q networks for evaluating action values. The LSTM network can process sequence information and encode historical states into the hidden state of the network so that the network can better capture temporal dependencies and thus predict the value function of the current state better. The simulation resultsshow that when the opponent adopts a nonmaneuvering strategy,the UAV formation developed using the proposed method as the core decision-making strategy can learn a reasonable maneuvering strategy and cooperate to a certain extent when facing an opponent using a fixed strategy. This proves the effectiveness of the algorithm in multi-UAV collaborative air combat maneuvering confrontation problems,enabling UAV formations to achieve teamwork and improve air combat efficiency. In a two-on-one air combat situation,the greedy algorithm is used as the decision-making strategy of the enemy aircraft. The results of simulation comparison experiments show that when faced with opponents using certain rules and strategies,the red team formation can learn reasonable maneuver confrontation strategies and cooperate in the decision-making process to form certain air combat tactics,which improve the combat efficiency of the red team. Compared with the basic method,the proposed method exhibits a more stable learning process and faster decision-making speed for UAV cooperative air combat. |
Author | 欧洋 缪克华 罗德林 郭正玉 |
AuthorAffiliation | 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102;空基信息感知与融合全国重点实验室,洛阳 471000 |
AuthorAffiliation_xml | – name: 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102;空基信息感知与融合全国重点实验室,洛阳 471000 |
Author_FL | GUO Zhengyu MIAO Kehua LUO Delin OU Yang |
Author_FL_xml | – sequence: 1 fullname: OU Yang – sequence: 2 fullname: GUO Zhengyu – sequence: 3 fullname: LUO Delin – sequence: 4 fullname: MIAO Kehua |
Author_xml | – sequence: 1 fullname: 欧洋 – sequence: 2 fullname: 郭正玉 – sequence: 3 fullname: 罗德林 – sequence: 4 fullname: 缪克华 |
BookMark | eNo9j8tKw0AYhWdRwVr7HOIi8Z9bJ7PU4g0KbnRdcpmRRknBQewDiIi02o1BVNBV1UUR6aI0iE_TSV7DiOLqg3PgO5wlVEm6iUJoBYOLKRVsLXY7xiQEJHck9aRLgFAXSnIXgFVQ9b9aRHVjOgFwTAWWBKpowz5l8-zaPnzZwbR4ec-nHzYb2c_M9lM7Hs1nz8X9uR3c2GG_eMvyy7v8MbNXr_ZiUozTPJ3lk9tltKD9Y6Pqf6yhg63N_eaO09rb3m2utxyDgQkn1BDpUBEBoVaaK-UB1VKEzCOgggYhPudhQwaeJz3JaRhgJgnVUUQw-8lpDa3-es_8RPvJYTvunp4k5WI7iI_iqNcLyuMMBICg3yyramU |
ClassificationCodes | TG142.71 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13374/j.issn2095-9389.2023.09.25.004 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Collaborative air combat maneuvering decision-making method based on graph convolutional deep reinforcement learning |
EndPage | 1236 |
ExternalDocumentID | bjkjdxxb202407007 |
GrantInformation_xml | – fundername: (厦门市科技局?厦门市产学研项目); (空基信息感知与融合全国重点实验室与航空科学基金联合资助项目) funderid: (厦门市科技局?厦门市产学研项目); (空基信息感知与融合全国重点实验室与航空科学基金联合资助项目) |
GroupedDBID | -0C -SC -S~ 2B. 2RA 4A8 5VR 92I 92M 93N 9D9 9DC AAITT AFUIB ALMA_UNASSIGNED_HOLDINGS CAJEC CQIGP FA0 GROUPED_DOAJ JUIAU PB1 PB6 PSX Q-- Q-2 R-C RT3 T8S TCJ U1F U5C |
ID | FETCH-LOGICAL-s1047-cf0dfce270cfef5ee803f97c4820eb622a55c69b8898953cb14923fdd214c69b3 |
ISSN | 2095-9389 |
IngestDate | Thu May 29 04:07:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | 多机协同 maneuver decision making 深度强化学习 空战决策 multi-unmanned aerial vehicle 无人机 air combat decision-making deep reinforcement learning multimachine collaboration 机动决策 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1047-cf0dfce270cfef5ee803f97c4820eb622a55c69b8898953cb14923fdd214c69b3 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_bjkjdxxb202407007 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 工程科学学报 |
PublicationTitle_FL | Chinese Journal of Engineering |
PublicationYear | 2024 |
Publisher | 空基信息感知与融合全国重点实验室,洛阳 471000 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102 |
Publisher_xml | – name: 厦门大学航空航天学院,厦门 361102%中国空空导弹研究院,洛阳 471000%厦门大学航空航天学院,厦门 361102 – name: 空基信息感知与融合全国重点实验室,洛阳 471000 |
SSID | ssib051371920 ssib023167159 ssj0003313525 ssib022319478 ssib041261352 ssib036435564 |
Score | 2.3989651 |
Snippet | TG142.71;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1227 |
Title | 基于图卷积深度强化学习的协同空战机动决策方法 |
URI | https://d.wanfangdata.com.cn/periodical/bjkjdxxb202407007 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcKkVxBdRVPymiMEHubqbj032cfdujyLoUwt9K7dfSoUTbAulzyIirfpiERX0qepDEelD6SH-An9G9-5vODOb7q1YpApHyE4mM5OZzWaSSyaOc6NwPZN7omhxk_stWf2_m_GWj4FlikxnBZ2Qu3vPn5mTd-bV_MSxn41dSyvLyXS6dui5kv-xKsDArnhK9h8sWxMFAOTBvpCChSE9ko1ZrFjQZVHIYompiQkSsYgypsMizWLNQvh1WezjY-RhESCHPmXaVB2Q2ywgSNihIiAYsNDF6gFQlpag6RILF_GRckDVfWYMCwxmgpogsDCUAb6CkDvEwscUiMcEry6_PPCPSSTAVIRvmIms_IHXkK3O-MRFHbw1CAjbiI60wUuOxiUBMwKrIQpUJoFAXyYYo4ByQEJNMsSkOhA1ZoH-DQXoV-1TJF2llbi5esJlvdO2et8bmmoarMtCj9rgWfOAlqEUNd4lFQCOIaMalAP4WNUby7_SL9q7Qw3UhAMpJ_0CQowVoQhERoMRJJTQr6yGoC6UguUicUtiCCZ3PDJwFy_YFFZDdhizK7lVd9WNMcnjVfQF699guJ1Dx04htKTBE3nULKZBawJDAXNcfJRjt6HezJksPlzMVlcTVC8MIBja4TjX4Mk2Fjjg6w5-qBc0gsdxjMHQcKYF-MaqEblIejC5F6p2vpUntHdwtRr6WUJgMe5RroU94dw8aMntv7eDzuj1i17_fsOdnD3tnLLzwKmw6tRnnIm1B2edqPww2B-8KN_9KDd2R5--Dne_lYOt8vugXN8st7f29z6O3j4pN16Wr9ZHXwbDZ2-G7wfl88_l053R9uZwc2-48_qcM9eNZ9szLXvJSWuJoqSkhZsVac61mxZ5ofLcuKIIdCrBNc8Tn_OeUqkfJAbveVUiTTwMqVhkGfckwsV5Z7L_qJ9fcKY0z5XJMpFylclEwsyj0D2eGZ4pmHQUvYvOddvmBfsRW1r4w3iXjoJ02Tk57kxXnMnlxyv5VXDOl5NrZPNfVPerTw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%BE%E5%8D%B7%E7%A7%AF%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%8D%8F%E5%90%8C%E7%A9%BA%E6%88%98%E6%9C%BA%E5%8A%A8%E5%86%B3%E7%AD%96%E6%96%B9%E6%B3%95&rft.jtitle=%E5%B7%A5%E7%A8%8B%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%AC%A7%E6%B4%8B&rft.au=%E9%83%AD%E6%AD%A3%E7%8E%89&rft.au=%E7%BD%97%E5%BE%B7%E6%9E%97&rft.au=%E7%BC%AA%E5%85%8B%E5%8D%8E&rft.date=2024-07-01&rft.pub=%E7%A9%BA%E5%9F%BA%E4%BF%A1%E6%81%AF%E6%84%9F%E7%9F%A5%E4%B8%8E%E8%9E%8D%E5%90%88%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B4%9B%E9%98%B3+471000&rft.issn=2095-9389&rft.volume=46&rft.issue=7&rft.spage=1227&rft.epage=1236&rft_id=info:doi/10.13374%2Fj.issn2095-9389.2023.09.25.004&rft.externalDocID=bjkjdxxb202407007 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb%2Fbjkjdxxb.jpg |