基于持续学习的中医舌色苔色协同分类方法

TN911.73%TP391; 中医(traditional Chinese medicine,TCM)舌诊客观化研究中需要分析的舌象特征很多,不同的舌象特征往往采用单独的方法进行分析,导致分析系统的整体实现复杂度大幅增加.为此,基于持续学习的思想,提出一种中医舌色苔色协同分类方法,该方法将舌色分类作为旧任务,将苔色分类作为新任务,充分利用2 个任务的相似性和相关性,仅通过一个网络结构就同时实现舌色和苔色的准确分类.首先,设计一种基于全局-局部混合注意力机制(global local hybrid attention,GLHA)的双分支网络结构,将网络高层语义特征与低层特征相融合,提升特征的表...

Full description

Saved in:
Bibliographic Details
Published in北京工业大学学报 Vol. 50; no. 9; pp. 1077 - 1088
Main Authors 卓力, 李艳萍, 孙亮亮, 张辉, 李晓光, 张菁, 杨洋, 魏玮
Format Journal Article
LanguageChinese
Published 北京工业大学信息学部,北京 100124 01.09.2024
北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%中国中医科学院望京医院功能性胃肠病中医诊治北京市重点实验室,北京 100102
Subjects
Online AccessGet full text
ISSN0254-0037
DOI10.11936/bjutxb2022090027

Cover

Abstract TN911.73%TP391; 中医(traditional Chinese medicine,TCM)舌诊客观化研究中需要分析的舌象特征很多,不同的舌象特征往往采用单独的方法进行分析,导致分析系统的整体实现复杂度大幅增加.为此,基于持续学习的思想,提出一种中医舌色苔色协同分类方法,该方法将舌色分类作为旧任务,将苔色分类作为新任务,充分利用2 个任务的相似性和相关性,仅通过一个网络结构就同时实现舌色和苔色的准确分类.首先,设计一种基于全局-局部混合注意力机制(global local hybrid attention,GLHA)的双分支网络结构,将网络高层语义特征与低层特征相融合,提升特征的表达能力;然后,提出基于正则化和回放相结合的持续学习策略,使得该网络在学习新任务知识的同时有效防止对旧任务知识的遗忘.在2 个自建的中医舌象特征分析数据集上的实验结果表明,提出的协同分类方法可以获得与单个任务相当的分类性能,同时可以将2 个分类任务的整体复杂度降低一半左右.其中,舌色分类准确率分别达到93.92%和92.97%,精确率分别达到93.69%和92.87%,召回率分别达到 93.96%和 93.16%;苔色分类准确率分别达到90.17%和90.26%,精确率分别达到90.05%和90.17%,召回率分别达到90.24%和90.29%.
AbstractList TN911.73%TP391; 中医(traditional Chinese medicine,TCM)舌诊客观化研究中需要分析的舌象特征很多,不同的舌象特征往往采用单独的方法进行分析,导致分析系统的整体实现复杂度大幅增加.为此,基于持续学习的思想,提出一种中医舌色苔色协同分类方法,该方法将舌色分类作为旧任务,将苔色分类作为新任务,充分利用2 个任务的相似性和相关性,仅通过一个网络结构就同时实现舌色和苔色的准确分类.首先,设计一种基于全局-局部混合注意力机制(global local hybrid attention,GLHA)的双分支网络结构,将网络高层语义特征与低层特征相融合,提升特征的表达能力;然后,提出基于正则化和回放相结合的持续学习策略,使得该网络在学习新任务知识的同时有效防止对旧任务知识的遗忘.在2 个自建的中医舌象特征分析数据集上的实验结果表明,提出的协同分类方法可以获得与单个任务相当的分类性能,同时可以将2 个分类任务的整体复杂度降低一半左右.其中,舌色分类准确率分别达到93.92%和92.97%,精确率分别达到93.69%和92.87%,召回率分别达到 93.96%和 93.16%;苔色分类准确率分别达到90.17%和90.26%,精确率分别达到90.05%和90.17%,召回率分别达到90.24%和90.29%.
Abstract_FL There are many characteristics of tongue that need to be analyzed in traditional Chinese medicine(TCM).Different characteristics are often analyzed by individual methods,which significantly increases the overall implementation complexity of the analysis system.Therefore,this paper proposes a collaborative classification method of tongue color and coating color in TCM based on continual learning.This method takes tongue color classification as an old task and coating color classification as a new task,which makes full use of the similarity and relevance of the two tasks to realize the accurate classification of tongue color and coating color simultaneously under a single network framework.First,a dual branch network structure with global local hybrid attention(GLHA)mechanism was designed,which aggregates high-level semantic features with low-level features to improve the representative capability of features.Second,a continual learning strategy based on the combination of regularization and rehearsal was proposed,which made the network effectively prevent forgetting the knowledge learned from old task while learning new task.The experimental results on two self-established TCM tongue datasets show that,the proposed collaborative classification method can achieve a comparable classification performance with a single task,and simultaneously,reduce the overall complexity of the two classification tasks by almost half.Among them,the accuracy of tongue color classification reaches 93.92%and 92.97%,the precision reaches 93.69%and 92.87%,the recall reaches 93.96%and 93.16%,respectively.While that of the coating color classification reaches 90.17%and 90.26%,the precision reaches 90.05%and 90.17%,the recall reaches 90.24%and 90.29%,respectively.
Author 卓力
李晓光
张辉
孙亮亮
李艳萍
魏玮
张菁
杨洋
AuthorAffiliation 北京工业大学信息学部,北京 100124;北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%中国中医科学院望京医院功能性胃肠病中医诊治北京市重点实验室,北京 100102
AuthorAffiliation_xml – name: 北京工业大学信息学部,北京 100124;北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%中国中医科学院望京医院功能性胃肠病中医诊治北京市重点实验室,北京 100102
Author_FL SUN Liangliang
YANG Yang
ZHANG Hui
LI Xiaoguang
WEI Wei
ZHUO Li
ZHANG Jing
LI Yanping
Author_FL_xml – sequence: 1
  fullname: ZHUO Li
– sequence: 2
  fullname: LI Yanping
– sequence: 3
  fullname: SUN Liangliang
– sequence: 4
  fullname: ZHANG Hui
– sequence: 5
  fullname: LI Xiaoguang
– sequence: 6
  fullname: ZHANG Jing
– sequence: 7
  fullname: YANG Yang
– sequence: 8
  fullname: WEI Wei
Author_xml – sequence: 1
  fullname: 卓力
– sequence: 2
  fullname: 李艳萍
– sequence: 3
  fullname: 孙亮亮
– sequence: 4
  fullname: 张辉
– sequence: 5
  fullname: 李晓光
– sequence: 6
  fullname: 张菁
– sequence: 7
  fullname: 杨洋
– sequence: 8
  fullname: 魏玮
BookMark eNotjzlOw0AYhacIEiHkAByBwvDP5vGUKGKTItFAHc2M7QgLORImIpRICAVhlgIoaKCicwE0JL6Ox_YxMEvzveJJb1lCrXgUBwitYFjDWFJ3XUfjk4kmQAhIACJaqA2EMweAikXUTZJDDcCIFJjSNpL2ZV7Mb8v0vMozm70Vs9fq-aL4ymya19O0vvqorx8a2ps7e5_a6WX1npdPs_LzcRkthOooCbr_2kEHW5v7vR2nv7e929voOwkGJhwvCANhsMLUKG7AxVRR4iuNheY-5R53uQkk0Vq62jQ7mSekK0hoGorGoh20-pd7quJQxcNBNBofx03jQEfDM3_y-5X9fBX0G4ttYBM
ClassificationCodes TN911.73%TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11936/bjutxb2022090027
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Collaborative Classification Method of TCM Tongue Color and Coating Color Based on Continual Learning
EndPage 1088
ExternalDocumentID bjgydxxb202409007
GrantInformation_xml – fundername: (国家自然科学基金); 国家中医药管理局中医药创新团队; (人才支持计划资助项目)
  funderid: (国家自然科学基金); 国家中医药管理局中医药创新团队; (人才支持计划资助项目)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
P2P
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1047-8efe7c1a13ca5c0613a32dab17b5d358565ce92bb96bc2544879672fc96775ce3
ISSN 0254-0037
IngestDate Thu May 29 03:59:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords deep learning
classification of tongue color and coating color in traditional Chinese medicine(TCM)
中医舌色苔色分类
机器视觉
continual learning
collaborative classification
协同分类
深度学习
global local hybrid attention mechanism
全局-局部混合注意力机制
持续学习
machine vision
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1047-8efe7c1a13ca5c0613a32dab17b5d358565ce92bb96bc2544879672fc96775ce3
PageCount 12
ParticipantIDs wanfang_journals_bjgydxxb202409007
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 北京工业大学学报
PublicationTitle_FL Journal of Beijing University of Technology
PublicationYear 2024
Publisher 北京工业大学信息学部,北京 100124
北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%中国中医科学院望京医院功能性胃肠病中医诊治北京市重点实验室,北京 100102
Publisher_xml – name: 北京工业大学计算智能与智能系统北京市重点实验室,北京 100124%中国中医科学院望京医院功能性胃肠病中医诊治北京市重点实验室,北京 100102
– name: 北京工业大学信息学部,北京 100124
SSID ssib004297133
ssib051370302
ssj0039890
ssib001129165
ssib002263171
Score 2.4243557
Snippet TN911.73%TP391; 中医(traditional Chinese medicine,TCM)舌诊客观化研究中需要分析的舌象特征很多,不同的舌象特征往往采用单独的方法进行分析,导致分析系统的整体实现复...
SourceID wanfang
SourceType Aggregation Database
StartPage 1077
Title 基于持续学习的中医舌色苔色协同分类方法
URI https://d.wanfangdata.com.cn/periodical/bjgydxxb202409007
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 0254-0037
  databaseCode: ADMLS
  dateStart: 20180110
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0039890
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0MqjgQLxFG9FiKnQwXq9u7ZLb25PESI0JFK6aL27F5TikMgdCumQEArieBRAQQMVXQqgIcnv5JJ8BmOv784iFCHNaGSP7fGOvTOza88QclvmaAcImjRYwnUDdyJv5EWJXkpRFricBWM2fPH8w2RuMbq_FC9NTD7zTi31uvpusfHPeyUnkSqWoVzNLdn_kOyoUyxAHOWLECWM8FgyhiwG2YJUQRYZKDLIEhCzaB5CxiFNQTUNDUKVWBoJKjBVEokjWyIcDbZC-kyAEAY3iIQ0tEgKMvJKkLgJomVHDyxxbFsldlBq-0lAJmY4RFIGdYbLoRHshpPcsa1sDykHFTuWkD3DdgSKe_yPEJwjtoqHi8VxJJlFFMh0XIN8NO1zqblnBjFMN_3G2K2UQ2ayEeKTpLP2yQlIM6izEQ2_lYTR6DBYvbpPOj2saoGidnoUVMurkiAYKIH74Wjnd0x8q_qGuHujozfeMBF_fPVTx91120x6ugQdc-7ZJTSo8x8e1XnSZuXRq73uug7NzWlpPjaMFfzo2KVeXXlerluiyBDxSTIdojYMpsi0as4_eDQ2pNEMpN7_bzTS0dCkvhXD6dhRiCkzmmMUuI1J4b5uugm78wSG1Xt_M2qvy3XaeWfFs-wWzpIzziWbUfX-OkcmNh6fJ6e9QJ0XiBx83dnbebfff3GwuzXY-r63_e3gy8u931uD_u7hZv_w9c_DNx8RDt6-H3zoDzZfHfzY3f-8vf_r00Wy2MoWZucaLulIY81GLRFVu-IFzSkr8rgw1m7OwjLXlOu4ZOhcJ3FRyVBrmejCxPcTXCY8bBcIOVaxS2Sq86RTXSYzFQ2rICx1FYvAJPWRsmwLXfIizou2DMQVcstNfNm9VNaWj4jo6nGIrpFT4-V-nUx1n_aqG2gsd_VNJ9k_AtCQgA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%8C%81%E7%BB%AD%E5%AD%A6%E4%B9%A0%E7%9A%84%E4%B8%AD%E5%8C%BB%E8%88%8C%E8%89%B2%E8%8B%94%E8%89%B2%E5%8D%8F%E5%90%8C%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%8D%93%E5%8A%9B&rft.au=%E6%9D%8E%E8%89%B3%E8%90%8D&rft.au=%E5%AD%99%E4%BA%AE%E4%BA%AE&rft.au=%E5%BC%A0%E8%BE%89&rft.date=2024-09-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%83%A8%2C%E5%8C%97%E4%BA%AC+100124&rft.issn=0254-0037&rft.volume=50&rft.issue=9&rft.spage=1077&rft.epage=1088&rft_id=info:doi/10.11936%2Fbjutxb2022090027&rft.externalDocID=bjgydxxb202409007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg