装备剩余寿命预测平行仿真中模型动态演化方法
TP391.9; 装备平行仿真中的一个重要概念是实时数据驱动的模型动态演化,但是至今仍缺乏具体应用领域的实现方法.以带未知离散冲击的混合退化装备剩余寿命预测为背景,以多态Wiener状态空间模型为演化对象,提出一种装备平行仿真中模型动态演化方法,包括基于交互多模型强跟踪滤波的模型软切换和基于期望最大化算法的模型参数在线估计,并实现了基于平行仿真的装备剩余寿命实时预测.利用某轴承退化数据进行实例研究,结果表明该方法能有效提高仿真逼真度,剩余寿命预测的准确度较高、不确定性较小,具有较高工程应用价值....
Saved in:
| Published in | 国防科技大学学报 Vol. 41; no. 5; pp. 118 - 127 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
陆军工程大学石家庄校区,河北石家庄,050003
28.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-2486 |
| DOI | 10.11887/j.cn.201905017 |
Cover
| Abstract | TP391.9; 装备平行仿真中的一个重要概念是实时数据驱动的模型动态演化,但是至今仍缺乏具体应用领域的实现方法.以带未知离散冲击的混合退化装备剩余寿命预测为背景,以多态Wiener状态空间模型为演化对象,提出一种装备平行仿真中模型动态演化方法,包括基于交互多模型强跟踪滤波的模型软切换和基于期望最大化算法的模型参数在线估计,并实现了基于平行仿真的装备剩余寿命实时预测.利用某轴承退化数据进行实例研究,结果表明该方法能有效提高仿真逼真度,剩余寿命预测的准确度较高、不确定性较小,具有较高工程应用价值. |
|---|---|
| AbstractList | TP391.9; 装备平行仿真中的一个重要概念是实时数据驱动的模型动态演化,但是至今仍缺乏具体应用领域的实现方法.以带未知离散冲击的混合退化装备剩余寿命预测为背景,以多态Wiener状态空间模型为演化对象,提出一种装备平行仿真中模型动态演化方法,包括基于交互多模型强跟踪滤波的模型软切换和基于期望最大化算法的模型参数在线估计,并实现了基于平行仿真的装备剩余寿命实时预测.利用某轴承退化数据进行实例研究,结果表明该方法能有效提高仿真逼真度,剩余寿命预测的准确度较高、不确定性较小,具有较高工程应用价值. |
| Author | 葛承垄 朱元昌 邸彦强 崔浩浩 |
| AuthorAffiliation | 陆军工程大学石家庄校区,河北石家庄,050003 |
| AuthorAffiliation_xml | – name: 陆军工程大学石家庄校区,河北石家庄,050003 |
| Author_FL | GE Chenglong DI Yanqiang ZHU Yuanchang CUI Haohao |
| Author_FL_xml | – sequence: 1 fullname: GE Chenglong – sequence: 2 fullname: ZHU Yuanchang – sequence: 3 fullname: DI Yanqiang – sequence: 4 fullname: CUI Haohao |
| Author_xml | – sequence: 1 fullname: 葛承垄 – sequence: 2 fullname: 朱元昌 – sequence: 3 fullname: 邸彦强 – sequence: 4 fullname: 崔浩浩 |
| BookMark | eNo9j71Kw1AYQO9QwVo7-wwOid93c3_SSaT4BwUXnUty700xSgoGsaOCItoughYEUaoOdRCHIli09GVyY30LBcXpbOdwZkghaSaGkDkEF9H35ULsqsSlgBXggLJAigiADmW-mCblNN0OgXooJEosksXJw4l9PLVnT9no2r6M7cXo6_44f23b4WDS62Tv48-bu-ztOe_37G3bnvfzw6P849J2unl3mA-uZslUFOympvzHEtlaWd6srjm1jdX16lLNSRGYdHjI_QoazSQPGJPKUxwEKCNYYAwHJgC9kCngHqUCAy6k4arCtdBUSa2FVyLzv96DIImCpFGPm_t7yU-x3oh2Yt1qhf_D3jcsyGLu |
| ClassificationCodes | TP391.9 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11887/j.cn.201905017 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Military & Naval Science |
| DocumentTitle_FL | Model dynamic evolution method of parallel simulation for equipment remaining useful life prediction |
| EndPage | 127 |
| ExternalDocumentID | gfkjdxxb201905017 |
| GrantInformation_xml | – fundername: 国家部委基金资助项目; 河北省自然科学基金资助项目 funderid: (9140A04020115JB34011); (F2019506029) |
| GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 PSX TCJ TGT TN5 U1G U5M |
| ID | FETCH-LOGICAL-s1047-5b5891ed475a447c3c5060ce64aee5046013b4c0532261a567e5c95d6d2c7dd63 |
| ISSN | 1001-2486 |
| IngestDate | Thu May 29 04:04:51 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | 模型演化 平行仿真 交互多模型 期望最大化 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1047-5b5891ed475a447c3c5060ce64aee5046013b4c0532261a567e5c95d6d2c7dd63 |
| PageCount | 10 |
| ParticipantIDs | wanfang_journals_gfkjdxxb201905017 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-28 |
| PublicationDateYYYYMMDD | 2019-10-28 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationTitle | 国防科技大学学报 |
| PublicationTitle_FL | Journal of National University of Defense Technology |
| PublicationYear | 2019 |
| Publisher | 陆军工程大学石家庄校区,河北石家庄,050003 |
| Publisher_xml | – name: 陆军工程大学石家庄校区,河北石家庄,050003 |
| SSID | ssib023167171 ssib057620141 ssib051370975 ssib001129263 ssj0000556656 |
| Score | 2.237686 |
| Snippet | TP391.9; 装备平行仿真中的一个重要概念是实时数据驱动的模型动态演化,但是至今仍缺乏具体应用领域的实现方法.以带未知离散冲击的混合退化装备剩余寿命预测为背景,以多... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 118 |
| Title | 装备剩余寿命预测平行仿真中模型动态演化方法 |
| URI | https://d.wanfangdata.com.cn/periodical/gfkjdxxb201905017 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-2486 databaseCode: ADMLS dateStart: 20181028 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620141 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9uHgRP6mfLGK8rc5HMpOcJLOdpYjtxRZ6K_NZqbBCu4Xak4Ii2l4ELQiiVD3Ug3gogsWW_jOdtf4XvpfJ7qytSPUSwsvLm_fym8x7GZIXQq7CK5MkXhTXfZmzOpOC1QFmmHiMRYz5SZTrzePjE97YFLs1zacHBrf7di0ttuPryfIfz5X8D6pAA1zxlOw_INsTCgSoA75QAsJQHgljGgqqXCo4DTlVEBX6WBGSKklDRoNRKqVuatKgiRVpIzEEBocKRkOPBsAfYFMgaeBqgTYVDd090L18KhtUNjUFWkexl9JsKDA03YVCIjQJC4JTLRl6Md0EFQ8pUMJTsMml5Z2X3bBYiwqMblLQwMHnKh8VRpkKxZY2Km0jqKG8vormUbz7-qAd0BVEYovsWg_KsorFQ8MCbQaMoHA1RYC6FYukwkGrcXy6TwS7qp8bmsC0oXoslexV-v-n2BIdkTmfjjNA2wnStUQoZYkB2My15cIM60GDfUQCcQJKSINSIWWwVJZBRaCKMHm0Lo7hRxj8v0lwGhbeW-H2-SncCecwk0XcOLIyg5iZsLzPK9nGxZUBjl0mYzjsOwX-fgLnmWBeYAgUuVUeqz2QkHw2vzeXLi3FPZ5BMuyAT7WGyLAaHb99pwrHIZh0qvRuDmZdsKvlB7dd35JV-MpRiG3C8zI3Pyw29AXMPXtNdi7U9cbvmupTd608as32BYiTJ8hxs7KrqXKaniQDy3dPkZFxnQV__kHtWm0igrlfM870NLm5_-FJ8fFp8ezT3s7r4stu8WLn5_vHna8rxdbm_vrq3vfdH2_e7X373NlYL96uFM83Og8fdbZfFqtrnbWtzuarM2SqGU42xurmOpP6gs6HwmO8wTNLmc_1Z9BNMLlnknksyjKOGxRsN2YJXtXieHbEPT_jieSplzqJn6aee5YMte63shFSk5n0UylzK49jFud2BMsuWLdxK2M8SXP3HLlixmLGfK4WZg7Bdv4oTBfIsWqSXCRD7fnF7BKE4e34skH7FyQBpZA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%A3%85%E5%A4%87%E5%89%A9%E4%BD%99%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B%E5%B9%B3%E8%A1%8C%E4%BB%BF%E7%9C%9F%E4%B8%AD%E6%A8%A1%E5%9E%8B%E5%8A%A8%E6%80%81%E6%BC%94%E5%8C%96%E6%96%B9%E6%B3%95&rft.jtitle=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E8%91%9B%E6%89%BF%E5%9E%84&rft.au=%E6%9C%B1%E5%85%83%E6%98%8C&rft.au=%E9%82%B8%E5%BD%A6%E5%BC%BA&rft.au=%E5%B4%94%E6%B5%A9%E6%B5%A9&rft.date=2019-10-28&rft.pub=%E9%99%86%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E7%9F%B3%E5%AE%B6%E5%BA%84%E6%A0%A1%E5%8C%BA%2C%E6%B2%B3%E5%8C%97%E7%9F%B3%E5%AE%B6%E5%BA%84%2C050003&rft.issn=1001-2486&rft.volume=41&rft.issue=5&rft.spage=118&rft.epage=127&rft_id=info:doi/10.11887%2Fj.cn.201905017&rft.externalDocID=gfkjdxxb201905017 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgfkjdxxb%2Fgfkjdxxb.jpg |