基于深度学习与大语言模型的序列推荐研究进展

TP31; 推荐系统旨在解决传统信息检索系统中信息过载的问题,并且致力于向用户推荐个性化感兴趣的内容.人与系统交互的行为具有一定的顺序性,在提供推荐时需要将其纳入考虑,这就是序列推荐系统.序列推荐系统通过分析用户行为序列,捕捉用户偏好的动态变化,为电子商务、社交媒体和在线视频等多个领域提供精准的个性化推荐服务.全面阐述了序列推荐系统的当前研究进展,并探讨了其在个性化推荐领域的重要性与应用潜力.定义了序列推荐的研究问题,明确了推荐序列的核心目标和挑战.详细分类并总结了序列推荐的主要技术,包括:基于马尔可夫链的传统方法,该方法在建模用户行为序列时依赖于状态转移概率;深度学习驱动的方法,利用神经网络...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 19; no. 2; pp. 344 - 366
Main Authors 徐凤如, 李博涵, 胥帅
Format Journal Article
LanguageChinese
Published 南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106 01.02.2025
南京航空航天大学脑机智能技术教育部重点实验室,南京 211106
智能决策与数字化运营工业和信息化部重点实验室,南京 211106
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2407090

Cover

Abstract TP31; 推荐系统旨在解决传统信息检索系统中信息过载的问题,并且致力于向用户推荐个性化感兴趣的内容.人与系统交互的行为具有一定的顺序性,在提供推荐时需要将其纳入考虑,这就是序列推荐系统.序列推荐系统通过分析用户行为序列,捕捉用户偏好的动态变化,为电子商务、社交媒体和在线视频等多个领域提供精准的个性化推荐服务.全面阐述了序列推荐系统的当前研究进展,并探讨了其在个性化推荐领域的重要性与应用潜力.定义了序列推荐的研究问题,明确了推荐序列的核心目标和挑战.详细分类并总结了序列推荐的主要技术,包括:基于马尔可夫链的传统方法,该方法在建模用户行为序列时依赖于状态转移概率;深度学习驱动的方法,利用神经网络模型来捕捉长期依赖关系与复杂模式;混合模型方法,结合多种算法来增强推荐系统的准确性和鲁棒性;以及新兴的基于大语言模型的方法,这些方法通过引入预训练的大语言模型来提升对用户行为和推荐内容的理解能力.展望了未来的研究方向,强调了上下文感知、多模态融合、因果推断、垂直领域特定大语言模型以及缓解幻觉问题等研究点的重要性.
AbstractList TP31; 推荐系统旨在解决传统信息检索系统中信息过载的问题,并且致力于向用户推荐个性化感兴趣的内容.人与系统交互的行为具有一定的顺序性,在提供推荐时需要将其纳入考虑,这就是序列推荐系统.序列推荐系统通过分析用户行为序列,捕捉用户偏好的动态变化,为电子商务、社交媒体和在线视频等多个领域提供精准的个性化推荐服务.全面阐述了序列推荐系统的当前研究进展,并探讨了其在个性化推荐领域的重要性与应用潜力.定义了序列推荐的研究问题,明确了推荐序列的核心目标和挑战.详细分类并总结了序列推荐的主要技术,包括:基于马尔可夫链的传统方法,该方法在建模用户行为序列时依赖于状态转移概率;深度学习驱动的方法,利用神经网络模型来捕捉长期依赖关系与复杂模式;混合模型方法,结合多种算法来增强推荐系统的准确性和鲁棒性;以及新兴的基于大语言模型的方法,这些方法通过引入预训练的大语言模型来提升对用户行为和推荐内容的理解能力.展望了未来的研究方向,强调了上下文感知、多模态融合、因果推断、垂直领域特定大语言模型以及缓解幻觉问题等研究点的重要性.
Abstract_FL The recommendation system aims to solve the problem of overloading in the information retrieval system,and is committed to recommending personalized interest to users.The behavior of human interaction with the system has a cer-tain order.When providing recommendations,the order needs to be taken into consideration.This is the sequence recom-mendation system.The sequence recommendation system analyzes user behavior sequences,captures the dynamic changes of user preferences,and provides accurate personalized recommendation services for many fields such as e-commerce,social media and online videos.This paper provides an overview of the current research progress in sequential recommendation systems and explores their significance and application potential in the field of personalized recommendation.Firstly,the research problem of sequential recommendation is defined,and the core objectives and challenges of recommendation sequences are clarified.Next,the main techniques in sequential recommendation are summarized in detail,including:traditional methods based on Markov chains,which model user behavior sequences by relying on state transition probabilities;deep learning-driven methods,which utilize neural network models to capture long-term dependencies and complex pat-terns;hybrid models,which combine multiple algorithms to enhance the accuracy and robustness of recommendation systems;and emerging methods based on large language models,which improve the understanding of user behavior and recommendation content through the integration of pre-trained large language models.Finally,the future research directions are prospected,with emphasis on the importance of context perception,multimodal fusion,causal inference,specific large language models of vertical fields,alleviating hallucinations,etc.
Author 徐凤如
李博涵
胥帅
AuthorAffiliation 南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106;南京航空航天大学脑机智能技术教育部重点实验室,南京 211106;智能决策与数字化运营工业和信息化部重点实验室,南京 211106
AuthorAffiliation_xml – name: 南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106;南京航空航天大学脑机智能技术教育部重点实验室,南京 211106;智能决策与数字化运营工业和信息化部重点实验室,南京 211106
Author_FL LI Bohan
XU Fengru
XU Shuai
Author_FL_xml – sequence: 1
  fullname: XU Fengru
– sequence: 2
  fullname: LI Bohan
– sequence: 3
  fullname: XU Shuai
Author_xml – sequence: 1
  fullname: 徐凤如
– sequence: 2
  fullname: 李博涵
– sequence: 3
  fullname: 胥帅
BookMark eNo9jT9Lw0AcQG-oYK39Dq4Oib_cXXKXSaT4DwouOpe75CKNkoKnqJuDgyBWB0VQ0ApS41Cki3-y-GVyST6GBcXpwRvem0G1pJcohOYcsAljfCG2u1ontuMxYvnU4TamwMCHGqr_u2nU1LorwaUUO8zjdbRoHrM86xcfY5MNzWiYfw3yz755fqneRlV6UqRP5uG8vDs12aU5uy36aXVxVQ6uy9f36vvejG9m0VQkdrVq_rGBtlaWN1trVntjdb211La0A5RZNPT9UEqMfa4wdRX3gEgG0uUqiERIvUBg5iknFL4UESE4BBVwj8gJQhko0kDzv91DkUQi2e7EvYO9ZHLsxDreOTre1xiwCxiAkR-flWfG
ClassificationCodes TP31
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2407090
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research Progress on Sequence Recommendation Based on Deep Learning and Large Language Model
EndPage 366
ExternalDocumentID jsjkxyts202502007
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1047-4d99dbb2298e245e8603b70b58ecfad46ca276e1da9baf332d0ec863b0ecdbce3
ISSN 1673-9418
IngestDate Thu May 29 04:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords sequence recommendation
大语言模型
序列推荐
large language model
推荐系统
recommendation system
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1047-4d99dbb2298e245e8603b70b58ecfad46ca276e1da9baf332d0ec863b0ecdbce3
PageCount 23
ParticipantIDs wanfang_journals_jsjkxyts202502007
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2025
Publisher 南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106
南京航空航天大学脑机智能技术教育部重点实验室,南京 211106
智能决策与数字化运营工业和信息化部重点实验室,南京 211106
Publisher_xml – name: 南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106%南京航空航天大学 计算机科学与技术学院/人工智能学院,南京 211106
– name: 智能决策与数字化运营工业和信息化部重点实验室,南京 211106
– name: 南京航空航天大学脑机智能技术教育部重点实验室,南京 211106
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.4111664
Snippet TP31; 推荐系统旨在解决传统信息检索系统中信息过载的问题,并且致力于向用户推荐个性化感兴趣的内容.人与系统交互的行为具有一定的顺序性,在提供推荐时需要将其纳入考虑,...
SourceID wanfang
SourceType Aggregation Database
StartPage 344
Title 基于深度学习与大语言模型的序列推荐研究进展
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202502007
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1673-9418
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib002423894
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5R3LahRBcAjx4kUUFd8EsU9h48x0Tz9O0rM7QxDiKYHcws5jlQgruBvQHMSDB0GMHhRBQSNIjIcgufjYiz-TSfboJ1jV07s7eQhRj8IyW9NdXY-u2a6q2X44zhWV50IGOa1RMEGNtXxeS8Cx1bIWF1kq4dfVwvXOMzf49By7Ph_Mj43_rMxaWuomU-nygetK_saqUAZ2xVWyf2DZIVEoABjsC1ewMFwPZWMSBUTFJNQkYniVEYk4CQUJPayCEs0R0A0DAI4i2jWANMhQxYgWJJJEx4iGgMTZD0AHAG3oqIjIkESCKGDBLGUZIyAlUQKRgRrgQ3PZIMpFZGCkmAEUCTlWhTFRoWnukfLMy0FYbPhGhp1AoKSp6kY1gRIqb7ci0iqLfH3ECUGR4UxpwyQygoCMArXE1oBeQQEGDdsLKLQ2fQefYIQCXCjRgSEHcFB9R-IHg2nV9qkeEBLWGrpuCIBmetANulJS9r2qGMHqN_kPvaGt7QBZxxUcRZTCjvJjK1xoJIBHBbXjWGuFoyRsHNSwvl-9SUjrIdcnfvC_ql5x6VzQmmLWyw98vqqMbX7FgdNyN1IbC9LyRKC9YQYVQpowAxlMDRlM4dsRtzz9ds8m7oudxdv37nc7-HC65fYXR3yIQ_CwmZkH0ShgBp-qqgk_3rNdK88hwxh6UDz9gQejBARuqXT5MEEJPCrwj9XhPWO-J8r1wQOpy-mNqNLV3ylkFjS2W832zUrsPXvcOWaT5gldjoAnnLHlWyeda8W73lZvZfvrZtFbKzbWtr6vbn1bKT587H_e6K8_3F5_X7x9svP6UdF7Vjx-tb2y3n_6fGf1xc6nL_0fb4rNl6ecuTiarU_X7HEwtY7ZT4ZlSmVJ4vtK5j4Lcsldmgg3CWSetpoZ42kTujT3sqZKmi1K_czNU8lpAl9Zkub0tDPevtPOzzgTKnNTyDW59FNIbxKZqJw3vUR6TAQ8FelZ57JVeMEO952FfSY8dxik887R0YB0wRnv3l3KL0Ia000uGcv_AhOg6Hw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8E%E5%A4%A7%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%BA%8F%E5%88%97%E6%8E%A8%E8%8D%90%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E5%BE%90%E5%87%A4%E5%A6%82&rft.au=%E6%9D%8E%E5%8D%9A%E6%B6%B5&rft.au=%E8%83%A5%E5%B8%85&rft.date=2025-02-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2F%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+211106%25%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2F%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+211106&rft.issn=1673-9418&rft.volume=19&rft.issue=2&rft.spage=344&rft.epage=366&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2407090&rft.externalDocID=jsjkxyts202502007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg