基于人工智能的录井岩屑荧光智能检测系统研制
P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油物质.针对不同岩屑样本的特性,可以根据岩屑类型和面积自由调节灯源波长,并配合工业相机对岩屑样本进行拍摄,采集易于深度学习算法检测的高清图像;使用嵌入于移动端的改进DeepLab v3+算法进行岩屑荧光检测,计算出荧光占比,并在移动设备屏幕上展示出计算结果和检测效果图.不同岩屑样本的测试结果表明,系统对岩屑荧光检测的平均交并比达到 72.73%,能够在保证准确性与时效性的同时,实现对岩样中荧光区域的有效量化.基于改进DeepLa...
Saved in:
Published in | 石油钻探技术 Vol. 52; no. 5; pp. 130 - 137 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-0890 |
DOI | 10.11911/syztjs.2024091 |
Cover
Abstract | P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油物质.针对不同岩屑样本的特性,可以根据岩屑类型和面积自由调节灯源波长,并配合工业相机对岩屑样本进行拍摄,采集易于深度学习算法检测的高清图像;使用嵌入于移动端的改进DeepLab v3+算法进行岩屑荧光检测,计算出荧光占比,并在移动设备屏幕上展示出计算结果和检测效果图.不同岩屑样本的测试结果表明,系统对岩屑荧光检测的平均交并比达到 72.73%,能够在保证准确性与时效性的同时,实现对岩样中荧光区域的有效量化.基于改进DeepLab v3+算法的岩屑荧光智能监测系统解决了人工探测岩屑荧光过程中存在的不确定因素,能够满足荧光录井技术对岩屑荧光检测的现场应用要求. |
---|---|
AbstractList | P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油物质.针对不同岩屑样本的特性,可以根据岩屑类型和面积自由调节灯源波长,并配合工业相机对岩屑样本进行拍摄,采集易于深度学习算法检测的高清图像;使用嵌入于移动端的改进DeepLab v3+算法进行岩屑荧光检测,计算出荧光占比,并在移动设备屏幕上展示出计算结果和检测效果图.不同岩屑样本的测试结果表明,系统对岩屑荧光检测的平均交并比达到 72.73%,能够在保证准确性与时效性的同时,实现对岩样中荧光区域的有效量化.基于改进DeepLab v3+算法的岩屑荧光智能监测系统解决了人工探测岩屑荧光过程中存在的不确定因素,能够满足荧光录井技术对岩屑荧光检测的现场应用要求. |
Abstract_FL | Existing fluorescent logging detection methods have problems such as single activation light source,limited quantitative evaluation accuracy,and complex detection calculation.To address these issues,an artificial intelligence(AI)-based detection system for rock cuttings fluorescence of logging was developed,so as to detect oily substances rapidly.In order to adapt to the characteristics of different cuttings samples,the lamp source wavelength could be freely adjusted according to the type and area of cuttings,and the cuttings samples could be shot with industrial cameras to collect high-definition images easily detected by deep learning algorithms.An improved DeepLab v3+algorithm embedded in a mobile device was used to detect cuttings fluorescence,calculate the fluorescence ratio,and display the results and detection images on the mobile device screen.Tests of various cuttings samples show that the system achieves an average intersection over union of 72.73% in detecting cuttings fluorescence,ensuring both accuracy and timeliness while quantifying fluorescent areas in the rock samples.The intelligent detection system for cuttings fluorescence based on the improved DeepLab v3+algorithm eliminates uncertainties present in manual fluorescence detection processes of cuttings and meets the practical needs of fluorescent logging technology for cuttings fluorescence detection. |
Author | 廖高龙 陈现军 董振国 付群超 郭书生 |
AuthorAffiliation | 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312 |
AuthorAffiliation_xml | – name: 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312 |
Author_FL | LIAO Gaolong DONG Zhenguo GUO Shusheng FU Qunchao CHEN Xianjun |
Author_FL_xml | – sequence: 1 fullname: CHEN Xianjun – sequence: 2 fullname: GUO Shusheng – sequence: 3 fullname: LIAO Gaolong – sequence: 4 fullname: DONG Zhenguo – sequence: 5 fullname: FU Qunchao |
Author_xml | – sequence: 1 fullname: 陈现军 – sequence: 2 fullname: 郭书生 – sequence: 3 fullname: 廖高龙 – sequence: 4 fullname: 董振国 – sequence: 5 fullname: 付群超 |
BookMark | eNrjYmDJy89LZWAQNzTQMzS0NDTUL66sKskq1jMyMDIxsDRkYeA0NDAw1DWwsDTgYOAtLs5MMjA1NDY3MTcz4mSwfzp_15NdfU927Xq6femzmbteNO99Pqvl6d6pT3ZNfbpp5dONE1_0Ln_a2gmRera44dnW7uebdz_fPf_5gilPO7bxMLCmJeYUp_JCaW6GUDfXEGcPXR9_d09nRx_dYkMDE3NdYzNTMwtjIzODJLNkUyPzZDOLZHOT5GSQHJA0Tk0yMTIyME9JS0kxBzrLMMks0dAwNSU5Jc3SJDXR3DzJmJtBHWJueWJeWmJeenxWfmlRHtDGeIhvwZ41NTA0NwYAqoxkLg |
ClassificationCodes | P618.13 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11911/syztjs.2024091 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Design of AI-Based Detection System for Rock Cuttings Fluorescence of Logging |
EndPage | 137 |
ExternalDocumentID | syztjs202405017 |
GrantInformation_xml | – fundername: 中海石油(中国)有限公司重大科技项目 funderid: (KJGG2022-0405) |
GroupedDBID | -02 2B. 4A8 92H 92I 93N ABJIA ABJNI ACGFS AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL CW9 PSX TCJ TGT TH9 U1G U5L |
ID | FETCH-LOGICAL-s1047-365683260b6c527c68c74cc1047cc13eb42207dfdd77621b6a11edcdf94ea77b3 |
ISSN | 1001-0890 |
IngestDate | Thu May 29 04:03:57 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 5 |
Keywords | cuttings deep learning 岩屑 image segmentation 深度学习 智能检测 intelligent detection 图像分割 荧光录井 fluorescent logging |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1047-365683260b6c527c68c74cc1047cc13eb42207dfdd77621b6a11edcdf94ea77b3 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_syztjs202405017 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 石油钻探技术 |
PublicationTitle_FL | PETROLEUM DRILLING TECHNIQUES |
PublicationYear | 2024 |
Publisher | 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312 |
Publisher_xml | – name: 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312 |
SSID | ssib051374762 ssib001105360 ssj0050095 ssib008679744 ssib017261007 ssib008858014 |
Score | 1.9915727 |
Snippet | P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 130 |
Title | 基于人工智能的录井岩屑荧光智能检测系统研制 |
URI | https://d.wanfangdata.com.cn/periodical/syztjs202405017 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Business Source Ultimate issn: 1001-0890 databaseCode: AKVCP dateStart: 20170101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu omitProxy: false ssIdentifier: ssj0050095 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxR1NaxNBdKnpRQ_iJ37Tg3Mq0ezsfJ5kJtlQFMVDK72V7EcUDxFserAnQQVFFER70EsFEfGookJK_0236c_wvdlpsv0APy5CGN6-ffM-w8y8ZOZNEFyUWnaSNOrWYfKM6izhjbrmuapnsHSA1YSMki4eFL5-Q8zMsavzfH6i9rqya2mpn1xKl_c9V_IvUQUcxBVPyf5FZEdMAQEwxBdaiDC0fxRjEnOi28QaEjNsVewBxHBiJTGcxIJo7TCKqIjYFokl0UDMHE2LaO57IQAYSox2QEh06Hq1iJGIUfDR-zEUxES4ZwIACzQWRVh4VQIWlQTANIh2QpUiVlSXxU6lNnZBDpRYkKKJpo6DQLsMdYDxUnSTmNGeZEerkSuwAVrbcEKAylZJQFfTcqZqYoQTyUDqmIQ7VQXSGgAUAjYmWo9JFLrEODUVquAiYMEH1V9PKBttDyu_706octIFGqldVBDDvMus8y9YhbqDdxgxytsJ3kdrDDHhNkZ7i3XDR8U0HdBGnlWG0FdL73Hwx15i2txLP70T1QZ7p7GCWkgJ5TtNKYn2xI6qCpl3EKH6f6tfmYDdFj9VXiG7PUNzWhmJeGW6Df1_erl_kvsvCrRbFSw-WO7fxQr9sIgtb4jbVWm9JHDvOUxUB4JJKoWgtWDSXLvVvDnOMiAnqVbZw5qV1UsklOKqsjkBUgSBe5G2nznoyaQYVbnjmOa4TRnedF-BDNW-vFNpd7Kw1-30blcWwbNHgsM-e50y5VB0NJhYvnMsOFSpaXo8uFKsDjYGLzcGg-Lnx823g61H68N3j4v1lY3BSvH1c_Hl1daLT8WTZ-WrzQ8PN78_H35bG66tDt-_KZ7-OBHMtePZ5kzd39JSX3RlXiLICGFZIBqJSDmVqVCpZGmK76CN8oRR2pBZN8skGB0mohOGeZZmXc3yjpRJdDKo9e718lPBFMsEU2kOLmKKdbTUKQvTBJKMrk5DIdTpYMqbv-BH4cWFXUE783uSs8HB8UhwLqj17y_l5yGz6CcXfKR_AQ-y0Sk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%9A%84%E5%BD%95%E4%BA%95%E5%B2%A9%E5%B1%91%E8%8D%A7%E5%85%89%E6%99%BA%E8%83%BD%E6%A3%80%E6%B5%8B%E7%B3%BB%E7%BB%9F%E7%A0%94%E5%88%B6&rft.jtitle=%E7%9F%B3%E6%B2%B9%E9%92%BB%E6%8E%A2%E6%8A%80%E6%9C%AF&rft.au=%E9%99%88%E7%8E%B0%E5%86%9B&rft.au=%E9%83%AD%E4%B9%A6%E7%94%9F&rft.au=%E5%BB%96%E9%AB%98%E9%BE%99&rft.au=%E8%91%A3%E6%8C%AF%E5%9B%BD&rft.date=2024-09-01&rft.pub=%E4%B8%AD%E6%B3%95%E6%B8%A4%E6%B5%B7%E5%9C%B0%E8%B4%A8%E6%9C%8D%E5%8A%A1%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E6%B5%B7%E5%8D%97%E5%88%86%E5%85%AC%E5%8F%B8%2C%E6%B5%B7%E5%8D%97+%E6%B5%B7%E5%8F%A3+570312%25%E4%B8%AD%E6%B5%B7%E7%9F%B3%E6%B2%B9%28%E4%B8%AD%E5%9B%BD%29%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E6%B5%B7%E5%8D%97%E5%88%86%E5%85%AC%E5%8F%B8%2C%E6%B5%B7%E5%8D%97+%E6%B5%B7%E5%8F%A3+570312&rft.issn=1001-0890&rft.volume=52&rft.issue=5&rft.spage=130&rft.epage=137&rft_id=info:doi/10.11911%2Fsyztjs.2024091&rft.externalDocID=syztjs202405017 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsyztjs%2Fsyztjs.jpg |