基于人工智能的录井岩屑荧光智能检测系统研制

P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油物质.针对不同岩屑样本的特性,可以根据岩屑类型和面积自由调节灯源波长,并配合工业相机对岩屑样本进行拍摄,采集易于深度学习算法检测的高清图像;使用嵌入于移动端的改进DeepLab v3+算法进行岩屑荧光检测,计算出荧光占比,并在移动设备屏幕上展示出计算结果和检测效果图.不同岩屑样本的测试结果表明,系统对岩屑荧光检测的平均交并比达到 72.73%,能够在保证准确性与时效性的同时,实现对岩样中荧光区域的有效量化.基于改进DeepLa...

Full description

Saved in:
Bibliographic Details
Published in石油钻探技术 Vol. 52; no. 5; pp. 130 - 137
Main Authors 陈现军, 郭书生, 廖高龙, 董振国, 付群超
Format Journal Article
LanguageChinese
Published 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312 01.09.2024
Subjects
Online AccessGet full text
ISSN1001-0890
DOI10.11911/syztjs.2024091

Cover

Abstract P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油物质.针对不同岩屑样本的特性,可以根据岩屑类型和面积自由调节灯源波长,并配合工业相机对岩屑样本进行拍摄,采集易于深度学习算法检测的高清图像;使用嵌入于移动端的改进DeepLab v3+算法进行岩屑荧光检测,计算出荧光占比,并在移动设备屏幕上展示出计算结果和检测效果图.不同岩屑样本的测试结果表明,系统对岩屑荧光检测的平均交并比达到 72.73%,能够在保证准确性与时效性的同时,实现对岩样中荧光区域的有效量化.基于改进DeepLab v3+算法的岩屑荧光智能监测系统解决了人工探测岩屑荧光过程中存在的不确定因素,能够满足荧光录井技术对岩屑荧光检测的现场应用要求.
AbstractList P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油物质.针对不同岩屑样本的特性,可以根据岩屑类型和面积自由调节灯源波长,并配合工业相机对岩屑样本进行拍摄,采集易于深度学习算法检测的高清图像;使用嵌入于移动端的改进DeepLab v3+算法进行岩屑荧光检测,计算出荧光占比,并在移动设备屏幕上展示出计算结果和检测效果图.不同岩屑样本的测试结果表明,系统对岩屑荧光检测的平均交并比达到 72.73%,能够在保证准确性与时效性的同时,实现对岩样中荧光区域的有效量化.基于改进DeepLab v3+算法的岩屑荧光智能监测系统解决了人工探测岩屑荧光过程中存在的不确定因素,能够满足荧光录井技术对岩屑荧光检测的现场应用要求.
Abstract_FL Existing fluorescent logging detection methods have problems such as single activation light source,limited quantitative evaluation accuracy,and complex detection calculation.To address these issues,an artificial intelligence(AI)-based detection system for rock cuttings fluorescence of logging was developed,so as to detect oily substances rapidly.In order to adapt to the characteristics of different cuttings samples,the lamp source wavelength could be freely adjusted according to the type and area of cuttings,and the cuttings samples could be shot with industrial cameras to collect high-definition images easily detected by deep learning algorithms.An improved DeepLab v3+algorithm embedded in a mobile device was used to detect cuttings fluorescence,calculate the fluorescence ratio,and display the results and detection images on the mobile device screen.Tests of various cuttings samples show that the system achieves an average intersection over union of 72.73% in detecting cuttings fluorescence,ensuring both accuracy and timeliness while quantifying fluorescent areas in the rock samples.The intelligent detection system for cuttings fluorescence based on the improved DeepLab v3+algorithm eliminates uncertainties present in manual fluorescence detection processes of cuttings and meets the practical needs of fluorescent logging technology for cuttings fluorescence detection.
Author 廖高龙
陈现军
董振国
付群超
郭书生
AuthorAffiliation 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312
AuthorAffiliation_xml – name: 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312
Author_FL LIAO Gaolong
DONG Zhenguo
GUO Shusheng
FU Qunchao
CHEN Xianjun
Author_FL_xml – sequence: 1
  fullname: CHEN Xianjun
– sequence: 2
  fullname: GUO Shusheng
– sequence: 3
  fullname: LIAO Gaolong
– sequence: 4
  fullname: DONG Zhenguo
– sequence: 5
  fullname: FU Qunchao
Author_xml – sequence: 1
  fullname: 陈现军
– sequence: 2
  fullname: 郭书生
– sequence: 3
  fullname: 廖高龙
– sequence: 4
  fullname: 董振国
– sequence: 5
  fullname: 付群超
BookMark eNrjYmDJy89LZWAQNzTQMzS0NDTUL66sKskq1jMyMDIxsDRkYeA0NDAw1DWwsDTgYOAtLs5MMjA1NDY3MTcz4mSwfzp_15NdfU927Xq6femzmbteNO99Pqvl6d6pT3ZNfbpp5dONE1_0Ln_a2gmRera44dnW7uebdz_fPf_5gilPO7bxMLCmJeYUp_JCaW6GUDfXEGcPXR9_d09nRx_dYkMDE3NdYzNTMwtjIzODJLNkUyPzZDOLZHOT5GSQHJA0Tk0yMTIyME9JS0kxBzrLMMks0dAwNSU5Jc3SJDXR3DzJmJtBHWJueWJeWmJeenxWfmlRHtDGeIhvwZ41NTA0NwYAqoxkLg
ClassificationCodes P618.13
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11911/syztjs.2024091
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Design of AI-Based Detection System for Rock Cuttings Fluorescence of Logging
EndPage 137
ExternalDocumentID syztjs202405017
GrantInformation_xml – fundername: 中海石油(中国)有限公司重大科技项目
  funderid: (KJGG2022-0405)
GroupedDBID -02
2B.
4A8
92H
92I
93N
ABJIA
ABJNI
ACGFS
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
PSX
TCJ
TGT
TH9
U1G
U5L
ID FETCH-LOGICAL-s1047-365683260b6c527c68c74cc1047cc13eb42207dfdd77621b6a11edcdf94ea77b3
ISSN 1001-0890
IngestDate Thu May 29 04:03:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 5
Keywords cuttings
deep learning
岩屑
image segmentation
深度学习
智能检测
intelligent detection
图像分割
荧光录井
fluorescent logging
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1047-365683260b6c527c68c74cc1047cc13eb42207dfdd77621b6a11edcdf94ea77b3
PageCount 8
ParticipantIDs wanfang_journals_syztjs202405017
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 石油钻探技术
PublicationTitle_FL PETROLEUM DRILLING TECHNIQUES
PublicationYear 2024
Publisher 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312
Publisher_xml – name: 中法渤海地质服务有限公司海南分公司,海南 海口 570312%中海石油(中国)有限公司海南分公司,海南 海口 570312
SSID ssib051374762
ssib001105360
ssj0050095
ssib008679744
ssib017261007
ssib008858014
Score 1.9915727
Snippet P618.13; 针对当前荧光录井检测方法存在激活光源单一、定量评估精度较差及检测计算方法复杂等问题,研制了一种基于人工智能的录井岩屑荧光智能检测系统,以便快速检测出含油...
SourceID wanfang
SourceType Aggregation Database
StartPage 130
Title 基于人工智能的录井岩屑荧光智能检测系统研制
URI https://d.wanfangdata.com.cn/periodical/syztjs202405017
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  issn: 1001-0890
  databaseCode: AKVCP
  dateStart: 20170101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  omitProxy: false
  ssIdentifier: ssj0050095
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxR1NaxNBdKnpRQ_iJ37Tg3Mq0ezsfJ5kJtlQFMVDK72V7EcUDxFserAnQQVFFER70EsFEfGookJK_0236c_wvdlpsv0APy5CGN6-ffM-w8y8ZOZNEFyUWnaSNOrWYfKM6izhjbrmuapnsHSA1YSMki4eFL5-Q8zMsavzfH6i9rqya2mpn1xKl_c9V_IvUQUcxBVPyf5FZEdMAQEwxBdaiDC0fxRjEnOi28QaEjNsVewBxHBiJTGcxIJo7TCKqIjYFokl0UDMHE2LaO57IQAYSox2QEh06Hq1iJGIUfDR-zEUxES4ZwIACzQWRVh4VQIWlQTANIh2QpUiVlSXxU6lNnZBDpRYkKKJpo6DQLsMdYDxUnSTmNGeZEerkSuwAVrbcEKAylZJQFfTcqZqYoQTyUDqmIQ7VQXSGgAUAjYmWo9JFLrEODUVquAiYMEH1V9PKBttDyu_706octIFGqldVBDDvMus8y9YhbqDdxgxytsJ3kdrDDHhNkZ7i3XDR8U0HdBGnlWG0FdL73Hwx15i2txLP70T1QZ7p7GCWkgJ5TtNKYn2xI6qCpl3EKH6f6tfmYDdFj9VXiG7PUNzWhmJeGW6Df1_erl_kvsvCrRbFSw-WO7fxQr9sIgtb4jbVWm9JHDvOUxUB4JJKoWgtWDSXLvVvDnOMiAnqVbZw5qV1UsklOKqsjkBUgSBe5G2nznoyaQYVbnjmOa4TRnedF-BDNW-vFNpd7Kw1-30blcWwbNHgsM-e50y5VB0NJhYvnMsOFSpaXo8uFKsDjYGLzcGg-Lnx823g61H68N3j4v1lY3BSvH1c_Hl1daLT8WTZ-WrzQ8PN78_H35bG66tDt-_KZ7-OBHMtePZ5kzd39JSX3RlXiLICGFZIBqJSDmVqVCpZGmK76CN8oRR2pBZN8skGB0mohOGeZZmXc3yjpRJdDKo9e718lPBFMsEU2kOLmKKdbTUKQvTBJKMrk5DIdTpYMqbv-BH4cWFXUE783uSs8HB8UhwLqj17y_l5yGz6CcXfKR_AQ-y0Sk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%9A%84%E5%BD%95%E4%BA%95%E5%B2%A9%E5%B1%91%E8%8D%A7%E5%85%89%E6%99%BA%E8%83%BD%E6%A3%80%E6%B5%8B%E7%B3%BB%E7%BB%9F%E7%A0%94%E5%88%B6&rft.jtitle=%E7%9F%B3%E6%B2%B9%E9%92%BB%E6%8E%A2%E6%8A%80%E6%9C%AF&rft.au=%E9%99%88%E7%8E%B0%E5%86%9B&rft.au=%E9%83%AD%E4%B9%A6%E7%94%9F&rft.au=%E5%BB%96%E9%AB%98%E9%BE%99&rft.au=%E8%91%A3%E6%8C%AF%E5%9B%BD&rft.date=2024-09-01&rft.pub=%E4%B8%AD%E6%B3%95%E6%B8%A4%E6%B5%B7%E5%9C%B0%E8%B4%A8%E6%9C%8D%E5%8A%A1%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E6%B5%B7%E5%8D%97%E5%88%86%E5%85%AC%E5%8F%B8%2C%E6%B5%B7%E5%8D%97+%E6%B5%B7%E5%8F%A3+570312%25%E4%B8%AD%E6%B5%B7%E7%9F%B3%E6%B2%B9%28%E4%B8%AD%E5%9B%BD%29%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E6%B5%B7%E5%8D%97%E5%88%86%E5%85%AC%E5%8F%B8%2C%E6%B5%B7%E5%8D%97+%E6%B5%B7%E5%8F%A3+570312&rft.issn=1001-0890&rft.volume=52&rft.issue=5&rft.spage=130&rft.epage=137&rft_id=info:doi/10.11911%2Fsyztjs.2024091&rft.externalDocID=syztjs202405017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsyztjs%2Fsyztjs.jpg