基于全卷积神经网络的荔枝表皮缺陷提取
S24%TP391.41; [目的]增强荔枝表皮缺陷提取效果,满足其品质检测分级准确性要求.[方法]采用Tensorflow框架构建基于AlexNet的全卷积神经网络AlexNet-FCN,以ReLU为激活函数,Max-pooling为下采样方法,Softmax回归分类器的损失函数作为优化目标,建立荔枝表皮缺陷提取的全卷积神经网络模型,并用批量随机梯度下降法对模型进行优化.[结果]模型收敛后在验证集上裂果交并比(IoUd)为0.83,褐变交并比(IoUb)为0.60,褐变与裂果的总体交并比(IoUa)为0.68;与利用线性SVM、朴素贝叶斯分类器缺陷提取效果相比,该模型的特征提取能力显著提高....
Saved in:
Published in | 华南农业大学学报 Vol. 39; no. 6; pp. 104 - 110 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
华南农业大学 工程学院/南方农业机械与装备关键技术教育部重点实验室,广东 广州,510642
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-411X |
DOI | 10.7671/j.issn.1001-411X.2018.06.016 |
Cover
Abstract | S24%TP391.41; [目的]增强荔枝表皮缺陷提取效果,满足其品质检测分级准确性要求.[方法]采用Tensorflow框架构建基于AlexNet的全卷积神经网络AlexNet-FCN,以ReLU为激活函数,Max-pooling为下采样方法,Softmax回归分类器的损失函数作为优化目标,建立荔枝表皮缺陷提取的全卷积神经网络模型,并用批量随机梯度下降法对模型进行优化.[结果]模型收敛后在验证集上裂果交并比(IoUd)为0.83,褐变交并比(IoUb)为0.60,褐变与裂果的总体交并比(IoUa)为0.68;与利用线性SVM、朴素贝叶斯分类器缺陷提取效果相比,该模型的特征提取能力显著提高.[结论]全卷积神经网络在水果表面缺陷提取中具有良好的应用前景. |
---|---|
AbstractList | S24%TP391.41; [目的]增强荔枝表皮缺陷提取效果,满足其品质检测分级准确性要求.[方法]采用Tensorflow框架构建基于AlexNet的全卷积神经网络AlexNet-FCN,以ReLU为激活函数,Max-pooling为下采样方法,Softmax回归分类器的损失函数作为优化目标,建立荔枝表皮缺陷提取的全卷积神经网络模型,并用批量随机梯度下降法对模型进行优化.[结果]模型收敛后在验证集上裂果交并比(IoUd)为0.83,褐变交并比(IoUb)为0.60,褐变与裂果的总体交并比(IoUa)为0.68;与利用线性SVM、朴素贝叶斯分类器缺陷提取效果相比,该模型的特征提取能力显著提高.[结论]全卷积神经网络在水果表面缺陷提取中具有良好的应用前景. |
Author | 邹湘军 王佳盛 李嘉威 曾泽钦 刘威威 陈燕 |
AuthorAffiliation | 华南农业大学 工程学院/南方农业机械与装备关键技术教育部重点实验室,广东 广州,510642 |
AuthorAffiliation_xml | – name: 华南农业大学 工程学院/南方农业机械与装备关键技术教育部重点实验室,广东 广州,510642 |
Author_FL | ZOU Xiangjun WANG Jiasheng LIU Weiwei CHEN Yan LI Jiawei ZENG Zeqin |
Author_FL_xml | – sequence: 1 fullname: WANG Jiasheng – sequence: 2 fullname: CHEN Yan – sequence: 3 fullname: ZENG Zeqin – sequence: 4 fullname: LI Jiawei – sequence: 5 fullname: LIU Weiwei – sequence: 6 fullname: ZOU Xiangjun |
Author_xml | – sequence: 1 fullname: 王佳盛 – sequence: 2 fullname: 陈燕 – sequence: 3 fullname: 曾泽钦 – sequence: 4 fullname: 李嘉威 – sequence: 5 fullname: 刘威威 – sequence: 6 fullname: 邹湘军 |
BookMark | eNo9jz9LAzEchjNUsNZ-CxeHi79czuQySvEfFFwU3Moll2iLpGAQ665jPQURLFpxEDvpWLjqt_Ga-i08UZxeeOF9Xp4FVLFdqxFaIoA542Slg9vOWUwASBARso9DIDEGhoGwCqr-9_Oo7lxbAoQQQTmsIlY85p_5ZXExKvpj__Lmn4d-kvmPaz-594PzWf9mOnyYPY384NW_519342l2VWS3i2jOJEdO1_-yhvY21ncbW0FzZ3O7sdYMHIGIBSrlnAmRAldKKAUJ5SEzUQqxMbBKgUotiUyUloprQymAiBVjTDIlUg2C1tDyL_c0sSaxB61O9-TYlo-tQ2vP0l5P_pgCKz3pN3NFYUc |
ClassificationCodes | S24%TP391.41 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7671/j.issn.1001-411X.2018.06.016 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitle_FL | Extraction of litchi fruit pericarp defect based on a fully convolutional neural network |
EndPage | 110 |
ExternalDocumentID | hnnydxxb201806016 |
GrantInformation_xml | – fundername: 国家重点研发计划; 国家自然科学基金; 广东省科技计划 funderid: (2018YFD0101001); (31571568); (2015A020209120, 2015A020209111) |
GroupedDBID | -04 2B. 4A8 5XA 5XE 92G 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CW9 DYU ECGQY OZF PSX TCJ TGD U1G U5N |
ID | FETCH-LOGICAL-s1046-cd77699d07cc9cc0a3726f4d08ff05303beb1bacebc7ef330098c666b6c9de093 |
ISSN | 1001-411X |
IngestDate | Thu May 29 04:04:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 6 |
Keywords | 荔枝 全卷积神经网络 缺陷提取 图像处理 深度学习 品质检测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1046-cd77699d07cc9cc0a3726f4d08ff05303beb1bacebc7ef330098c666b6c9de093 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_hnnydxxb201806016 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 华南农业大学学报 |
PublicationTitle_FL | Journal of South China Agricultural University |
PublicationYear | 2018 |
Publisher | 华南农业大学 工程学院/南方农业机械与装备关键技术教育部重点实验室,广东 广州,510642 |
Publisher_xml | – name: 华南农业大学 工程学院/南方农业机械与装备关键技术教育部重点实验室,广东 广州,510642 |
SSID | ssib002040671 ssib051370473 ssib002806938 ssib036437894 ssib005319396 ssj0048704 |
Score | 1.8151202 |
Snippet | S24%TP391.41; [目的]增强荔枝表皮缺陷提取效果,满足其品质检测分级准确性要求.[方法]采用Tensorflow框架构建基于AlexNet的全卷积神经网络AlexNet-FCN,以ReLU为激活函... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 104 |
Title | 基于全卷积神经网络的荔枝表皮缺陷提取 |
URI | https://d.wanfangdata.com.cn/periodical/hnnydxxb201806016 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVCAB databaseName: Nutrition and Food Sciences Database issn: 1001-411X databaseCode: DYU dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.cabidigitallibrary.org/product/zd omitProxy: true ssIdentifier: ssj0048704 providerName: CAB International – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1001-411X databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0048704 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB9qBdGD-ImfpUhzKqlJJpmPY7KbpXjw1IV6Kslk055W6AfUnvVYqyCCRSsexJ70WGj1v3Gb-l_43tvZ3ViL1MISXt--ee_35k3nTbKTN4xNaZjw_CDI3VIY7oZFmbkasoZrorBUXGSQ02iX72Mx2w4fzUfzY-Pt2q6ltdV8xmyc-F7JWaIKPIgrviX7H5EdKgUG0BBfuEKE4XqqGDtp5OiWk8ROGuJVpchRkRMrIppOIp1UOjF8WkSAfIpEkjiKOEnT0b7l6AYSGvSETqqwuQZCYBPdRE7sk2aSift6GmRdO1qTLYFqtUfWgRD1ta-FZEGCckmEILuAX6Fa4MQhAkai6cSiRoBysBsNxgjaB2UqodbgKydo4EcyEiFkikAr-LLWWKBokiIBLaE9ygZg6A-RAV4N_aEJCxB-_VmJr-xLg4PRfTY_p5FKKEQYKEV-DV0nN2KsYltTChoBuz5JO_2ZEAGtEs9-hZggjBzHSB-BknbIYO9pDHic2p5WntWDYweICDHguACFAQorTsNBoxKAhF0cWDygBAcaYAY9DcsBcwHRIJO0Bmgb0zUWdYHGHbowi4uw9kwaq3i5oU8nHw2Tar9ClZ086hnSnjZtF1t-f0_z8TwuhezncTQwMzSAOzH75Xb9Y-XTaUG21O0-K9bXc5SiMkPn2PlACoEHmzSftEerUkhc9aqOuLlA19IQpiU-qkLJ8bdtNUpbkc-lF8rhgg9u-emU0iHMC2zK-vDwXx7Qa4LdMusu1la0c1fYZXsrOhn355WrbGxj6Rq7FC8u23I8netM9D7u_9x_2Xux29vcq758qz7vVAdb1Y_X1cH7avv50eabw50PR592q-2v1ff9X-_2Drde9bbe3mDtVjrXmHXtSSvuCu7xcE0hpdC68KQx2hgv4zIQZVh4qiyhOzyew5Iuz0wnN7JTco5ViI0QIhdGFx1P85tsvPu027nFJmHmz0vuZTLH8xJkmUnf-KVnTFSoQHj8NntgvV6wM-nKwl-Bu3Maobvs4uh__B4bX11e69yHO4TVfIKerE1Q1H8D5DnDEg |
linkProvider | CAB International |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%A8%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%8D%94%E6%9E%9D%E8%A1%A8%E7%9A%AE%E7%BC%BA%E9%99%B7%E6%8F%90%E5%8F%96&rft.jtitle=%E5%8D%8E%E5%8D%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E4%BD%B3%E7%9B%9B&rft.au=%E9%99%88%E7%87%95&rft.au=%E6%9B%BE%E6%B3%BD%E9%92%A6&rft.au=%E6%9D%8E%E5%98%89%E5%A8%81&rft.date=2018-11-01&rft.pub=%E5%8D%8E%E5%8D%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2F%E5%8D%97%E6%96%B9%E5%86%9C%E4%B8%9A%E6%9C%BA%E6%A2%B0%E4%B8%8E%E8%A3%85%E5%A4%87%E5%85%B3%E9%94%AE%E6%8A%80%E6%9C%AF%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E%2C510642&rft.issn=1001-411X&rft.volume=39&rft.issue=6&rft.spage=104&rft.epage=110&rft_id=info:doi/10.7671%2Fj.issn.1001-411X.2018.06.016&rft.externalDocID=hnnydxxb201806016 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhnnydxxb%2Fhnnydxxb.jpg |