时空邻域感知的时序兴趣点推荐

TP391; 如何捕捉用户行为的动态变化和依赖关系是当前兴趣点推荐的一个重要问题,主要面临着数据稀疏、时空序列特征提取难以及用户个性化差异不易捕捉等挑战.为了解决这些挑战,提出了一种基于时空邻域感知及隐含状态变化的时序兴趣点推荐方法.该方法将用户行为的学习转换成了潜在状态的学习,并以一种结合距离信息的方式引入空间信息,有效地捕捉了用户的移动特征.首先,利用变分自编码器表征用户的潜在状态,再通过图神经网络学习到潜在状态之间的依赖关系,从而捕捉到用户行为的时序依赖;然后,利用注意力机制和径向基函数来捕捉用户与地点候选集之间的空间依赖,进而评估用户访问每个地点的概率,实现兴趣点推荐.在三个真实数据集...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 7; pp. 1865 - 1878
Main Authors 温雯, 邓峰颖, 郝志峰, 蔡瑞初, 梁方宇
Format Journal Article
LanguageChinese
Published 广东工业大学 计算机学院,广州 510006%广东工业大学 计算机学院,广州 510006 01.07.2024
汕头大学,广东 汕头 515000
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2305113

Cover

Abstract TP391; 如何捕捉用户行为的动态变化和依赖关系是当前兴趣点推荐的一个重要问题,主要面临着数据稀疏、时空序列特征提取难以及用户个性化差异不易捕捉等挑战.为了解决这些挑战,提出了一种基于时空邻域感知及隐含状态变化的时序兴趣点推荐方法.该方法将用户行为的学习转换成了潜在状态的学习,并以一种结合距离信息的方式引入空间信息,有效地捕捉了用户的移动特征.首先,利用变分自编码器表征用户的潜在状态,再通过图神经网络学习到潜在状态之间的依赖关系,从而捕捉到用户行为的时序依赖;然后,利用注意力机制和径向基函数来捕捉用户与地点候选集之间的空间依赖,进而评估用户访问每个地点的概率,实现兴趣点推荐.在三个真实数据集上进行了实验比较和分析,显示了该方法相比于现有的基准算法具有更好的时序推荐性能.
AbstractList TP391; 如何捕捉用户行为的动态变化和依赖关系是当前兴趣点推荐的一个重要问题,主要面临着数据稀疏、时空序列特征提取难以及用户个性化差异不易捕捉等挑战.为了解决这些挑战,提出了一种基于时空邻域感知及隐含状态变化的时序兴趣点推荐方法.该方法将用户行为的学习转换成了潜在状态的学习,并以一种结合距离信息的方式引入空间信息,有效地捕捉了用户的移动特征.首先,利用变分自编码器表征用户的潜在状态,再通过图神经网络学习到潜在状态之间的依赖关系,从而捕捉到用户行为的时序依赖;然后,利用注意力机制和径向基函数来捕捉用户与地点候选集之间的空间依赖,进而评估用户访问每个地点的概率,实现兴趣点推荐.在三个真实数据集上进行了实验比较和分析,显示了该方法相比于现有的基准算法具有更好的时序推荐性能.
Abstract_FL How to capture the dynamic changes and dependencies of user behavior is a vital issue existing in point-of-interest(POI)recommendation.It mainly faces challenges including data scarcity,difficulty in extracting spatio-temporal sequence features and in capturing users·individuated differences.In order to address these challenges,this paper proposes a time-sequence POI recommendation method based on spatio-temporal vicinity perception and implicit changes of users·state.This method is aimed at converting the learning of user behavior into the learning of users·latent state,combined with distance information to introduce spatial information,which effectively captures users·mobile characteristics.Firstly,the variational autoencoder is utilized to represent the potential state of users.And then the dependency among the latent states is learnt through the graph neural network so as to capture the time-sequence dependence of user behavior.Furthermore,this paper makes use of the attention mechanism and radial ba-sis function to capture the spatial dependence between the user and location candidate sets.Next,this paper evalu-ates the frequencies of user visiting each location,hence achieving point-of-interest recommendation.Experimental comparison and analysis on three real datasets demonstrate that the temporal recommendation performance of the proposed method is superior to existing benchmark algorithms.
Author 蔡瑞初
邓峰颖
温雯
梁方宇
郝志峰
AuthorAffiliation 广东工业大学 计算机学院,广州 510006%广东工业大学 计算机学院,广州 510006;汕头大学,广东 汕头 515000
AuthorAffiliation_xml – name: 广东工业大学 计算机学院,广州 510006%广东工业大学 计算机学院,广州 510006;汕头大学,广东 汕头 515000
Author_FL CAI Ruichu
HAO Zhifeng
DENG Fengying
WEN Wen
LIANG Fangyu
Author_FL_xml – sequence: 1
  fullname: WEN Wen
– sequence: 2
  fullname: DENG Fengying
– sequence: 3
  fullname: HAO Zhifeng
– sequence: 4
  fullname: CAI Ruichu
– sequence: 5
  fullname: LIANG Fangyu
Author_xml – sequence: 1
  fullname: 温雯
– sequence: 2
  fullname: 邓峰颖
– sequence: 3
  fullname: 郝志峰
– sequence: 4
  fullname: 蔡瑞初
– sequence: 5
  fullname: 梁方宇
BookMark eNo9jb1KA0EYALeIYIx5B1uFO7_93y0l-AcBG63D7e2u5JQNuIrahliq6QSbK0TQXgLG57m7-BYGFKuBKWbWUCuMgkNoA0NKpVTbRTqMMaRYSJpohlVKKHCMaQu1_90q6sY4NMAZI1gK1UZb9dOseZ9_j7-qsqwnZVO-Ns-Tpazmj9Xdx2L20ow_64e3xf10Ha347Dy67h876GRv97h3kPSP9g97O_0kYmA8sUC5prn1QoN01jlneK4tkcIbYSXzwBxxinOlvMwECEsMk5JpQzHXOacdtPnbvc6Cz8LpoBhdXYTlcVDE4uzm9jISIAwkYE5_APBAVwY
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2305113
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Recommendation Method for Time-Sequence Point of Interest via Spatio-Temporal Vicinity Perception
EndPage 1878
ExternalDocumentID jsjkxyts202407015
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1045-d03593cdf6907edeeeb5c9d276fb6d74f04e2e85588f7a606d2b47749b3159c53
ISSN 1673-9418
IngestDate Thu May 29 04:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 注意力机制
point-of-interest(POI)recommendation
variational auto-encoder
图神经网络
attention mechanism
变分自编码器
兴趣点推荐
graph neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1045-d03593cdf6907edeeeb5c9d276fb6d74f04e2e85588f7a606d2b47749b3159c53
PageCount 14
ParticipantIDs wanfang_journals_jsjkxyts202407015
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2024
Publisher 广东工业大学 计算机学院,广州 510006%广东工业大学 计算机学院,广州 510006
汕头大学,广东 汕头 515000
Publisher_xml – name: 广东工业大学 计算机学院,广州 510006%广东工业大学 计算机学院,广州 510006
– name: 汕头大学,广东 汕头 515000
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.3889172
Snippet TP391; 如何捕捉用户行为的动态变化和依赖关系是当前兴趣点推荐的一个重要问题,主要面临着数据稀疏、时空序列特征提取难以及用户个性化差异不易捕捉等挑战.为了解决这些挑...
SourceID wanfang
SourceType Aggregation Database
StartPage 1865
Title 时空邻域感知的时序兴趣点推荐
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202407015
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1673-9418
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib002423894
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3Na9RAFA-1XryIouI3RZyLJTXJTObjONnNUoR6aqG3sslMlApbcHdBe_BQ6tGPm-BlDyLoXQrWv2d363_he5NssrUq1YuwhJk3L2_eb94m700yL-N5d_NAFJaxwlc8tz4zQvhZSKEqjaEi6EorMRt57SFf3WAPNuPNhTOTuVVLw0G2ku_-Mq_kX6wKNLArZsn-hWVroUCAMtgXjmBhOJ7KxiTlRAmScJIKohVJNEkVkRFJEpLGRHXwBzySuYLAo45dQSOxOT3Gc2UHCxLK0CSRrikyo0Dl5KRES2ySbVJuvzmLa5GooTV0mqQoFoW3nEpAgR5DFK7bREN3jCQSpVUyI-SBTnW91BlbgAUwASCVEN1pWhxCRZ3SlCQBUkCE4sdYKFFtx9JxylS8DYskilX6gmoqddCB2J5_DhKxes1s-c91ghQKLTEAQqQIN6wlRTucDDHPAC__cXjqUQGkDknUmuvGSVfpcoyvSDiJ4v-twpwb44L6ilWe7YSfG85WZ5dOK5Tldh1VABTKclOln50rFUI654pdrNRdYCoBRO20CSjqZZ7b_e0nz54P-mgucC34LYizEXhf3GJl7UXahIngSdT8NBfr7Fi-NcTVtd_APQ943ITdUKUy4HVYHodU4OvEus4YTLzLrNiZ1uWiPoR0_3eAXBpfr-j2Hs1FnOsXvPPVVHFJl9f9RW9h9_El797k3cH08-H3vW_j0WiyP5qOPk7f7wNxfPhm_PLL0cGH6d7XyetPR6_eXvY2Oul6a9Wv9jvx-yHMrHyDn9OkuSnwiZU11toszpWBESsybgQrAmYjK-NYykJ0ecBNlDGYvqmMwqQkj-kVb7G307NXvSVru0GY0zAvbMbCqJvlAr_lZ2gkTGREdM27U2Hbqu5n_a0T1rp-GqYb3rnmarzpLQ6eDu0tiNMH2W1n5B-HG6LI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%97%B6%E7%A9%BA%E9%82%BB%E5%9F%9F%E6%84%9F%E7%9F%A5%E7%9A%84%E6%97%B6%E5%BA%8F%E5%85%B4%E8%B6%A3%E7%82%B9%E6%8E%A8%E8%8D%90&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E6%B8%A9%E9%9B%AF&rft.au=%E9%82%93%E5%B3%B0%E9%A2%96&rft.au=%E9%83%9D%E5%BF%97%E5%B3%B0&rft.au=%E8%94%A1%E7%91%9E%E5%88%9D&rft.date=2024-07-01&rft.pub=%E5%B9%BF%E4%B8%9C%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E5%B7%9E+510006%25%E5%B9%BF%E4%B8%9C%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E5%B7%9E+510006&rft.issn=1673-9418&rft.volume=18&rft.issue=7&rft.spage=1865&rft.epage=1878&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2305113&rft.externalDocID=jsjkxyts202407015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg