用于航班延误预测的集成式增量学习算法

U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验...

Full description

Saved in:
Bibliographic Details
Published in北京工业大学学报 Vol. 46; no. 11; pp. 1239 - 1245
Main Authors 王丹, 王萌, 王晓曦, 杨萍
Format Journal Article
LanguageChinese
Published 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200 01.11.2020
Subjects
Online AccessGet full text
ISSN0254-0037
DOI10.11936/bjutxb2019030009

Cover

Abstract U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果.
AbstractList U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果.
Author 王丹
王晓曦
杨萍
王萌
AuthorAffiliation 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200
AuthorAffiliation_xml – name: 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200
Author_FL WANG Dan
WANG Meng
WANG Xiaoxi
YANG Ping
Author_FL_xml – sequence: 1
  fullname: WANG Dan
– sequence: 2
  fullname: WANG Meng
– sequence: 3
  fullname: WANG Xiaoxi
– sequence: 4
  fullname: YANG Ping
Author_xml – sequence: 1
  fullname: 王丹
– sequence: 2
  fullname: 王萌
– sequence: 3
  fullname: 王晓曦
– sequence: 4
  fullname: 杨萍
BookMark eNotj81Kw0AUhWdRobX2AXwEF9F75yaTzlKKf1Bwo-syE5NikCkYi3VftCAYFxVBQaQLEaF2IRb8eZwmad7CiC4OZ3e-8y2ykukYn7FlhFVESWJNh92TnuaAEggAZIlVgDu2BUBumdWi6FAD2Fy6SFRhIhs-zz6v5oOXLB4nX9P5ZJKP-un7ZXbXz-_P08F18h0no4f8Ik7GT7OPx-z1Nn27WWILgTqK_Np_V9n-5sZeY9tq7m7tNNabVoRgO5anBNUD0pyj6wOiS57SCkAgauBAQnJPeRK5K22yiavimFYkVT0AXYSqbOVv91SZQJl2K-x0j01BbOmwfXbQ-xUtVBHAoR9egVz5
ClassificationCodes U461%TP308
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11936/bjutxb2019030009
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Ensemble of Incremental Learning Algorithm for Flight Delay Prediction
EndPage 1245
ExternalDocumentID bjgydxxb202011005
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61672505)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
P2P
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1045-ca638f3b2217e01173caba00611b0203692cac9127943432a042ba39a8f0b8f03
ISSN 0254-0037
IngestDate Thu May 29 03:59:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 选择性集成
集成学习
机器学习
增量学习
航班延误
分类与回归树(CART)算法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1045-ca638f3b2217e01173caba00611b0203692cac9127943432a042ba39a8f0b8f03
PageCount 7
ParticipantIDs wanfang_journals_bjgydxxb202011005
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 北京工业大学学报
PublicationTitle_FL Journal of Beijing University of Technology
PublicationYear 2020
Publisher 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200
Publisher_xml – name: 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200
SSID ssib004297133
ssib051370302
ssj0039890
ssib001129165
ssib002263171
Score 2.2866383
Snippet U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and...
SourceID wanfang
SourceType Aggregation Database
StartPage 1239
Title 用于航班延误预测的集成式增量学习算法
URI https://d.wanfangdata.com.cn/periodical/bjgydxxb202011005
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 0254-0037
  databaseCode: ADMLS
  dateStart: 20180110
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0039890
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEF9q-6IP4id-U8R5kmh2N3e3-7iXXClifbGFvpX7SCp9iGBTqH0uWhCsD4qgINIHEaH2QRT8-BP8M5qm_S-cmVySq41QG5Jj2dmdndnf3c3MZm9OiBtlncoYDX0pM5kuVTKV0X3QR0D8cpLiJ-B_TKfu-ZMzlTuz3uzIsd-FXUtLreRWujL0uZKjoIp1iCs9JfsfyPaZYgWWEV88IsJ4PBTGEAVgK-AMRBUIHZgIIgPGgHNEMhPgahB5EIYQ-kRyE_SNLDgFpgKRD6EHJmQ-jmss2BCMTyTkY8vcvUqssIC9bERtTNCrqYHzeXTkWSY-LgIbMGcN3Rdb9nxfam-qTGVpXZWZYxePawzJQDxRo6DAvF9AkbCX1ztHWMWIxefeoR1CYR1MdQjFB4vKai6EyH_QBCtqPKndzrXiygiGwXLfyshRtUISgiFZK8mo9Ek4v5rGV9WDzG9SNitVAeURDQUPGWGcdUKYTweEFAtYb2UOiOMC6eLvG8byifCPYVQ3uWvPTGCIX6I0QkWbli_r5teuLFgo9FRswdtBib3hltTyu36ShaXWcqIo44Amf3zgNvQ3cyYL84-zZWrEziQlFB5Tge-rUTHmalN37w_cc3QuZeFfdXT90X2VRd8okIPww5Oa7FE_HZy2Jl8zzTXOdymQqLf_FpQfwms24uZ8wV-cPiVO5oHeuOtetafFyMqDM-JEIf3nWeF3Xn7c_vF8d-1TZ32z_fPb7tbW3sbqztdnnTere2-f7Ky9aP9ab2-823u63t78sP39fefz650vr86JmYloujpZyt9jUlqUGDGV0hiNXEMnCsP_OuVg1GmcxBQ8yIQ3AliVxqmVipM1ahXjRCSxtrFplBP86fNitPmwWb8gxrN6Q3sxGuIYG-F91Jp67DWkl-KUZPWkfFFcz7Wey-9Ti3MH8Ll0mEaXxfHBNXVFjLYeLdWvov_dSq7lsP4B8s2fkA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%94%A8%E4%BA%8E%E8%88%AA%E7%8F%AD%E5%BB%B6%E8%AF%AF%E9%A2%84%E6%B5%8B%E7%9A%84%E9%9B%86%E6%88%90%E5%BC%8F%E5%A2%9E%E9%87%8F%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E4%B8%B9&rft.au=%E7%8E%8B%E8%90%8C&rft.au=%E7%8E%8B%E6%99%93%E6%9B%A6&rft.au=%E6%9D%A8%E8%90%8D&rft.date=2020-11-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%83%A8%2C%E5%8C%97%E4%BA%AC+100124%25%E5%9B%BD%E5%AE%B6%E7%94%B5%E7%BD%91%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+102200&rft.issn=0254-0037&rft.volume=46&rft.issue=11&rft.spage=1239&rft.epage=1245&rft_id=info:doi/10.11936%2Fbjutxb2019030009&rft.externalDocID=bjgydxxb202011005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg