用于航班延误预测的集成式增量学习算法
U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验...
Saved in:
Published in | 北京工业大学学报 Vol. 46; no. 11; pp. 1239 - 1245 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-0037 |
DOI | 10.11936/bjutxb2019030009 |
Cover
Abstract | U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果. |
---|---|
AbstractList | U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果. |
Author | 王丹 王晓曦 杨萍 王萌 |
AuthorAffiliation | 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200 |
AuthorAffiliation_xml | – name: 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200 |
Author_FL | WANG Dan WANG Meng WANG Xiaoxi YANG Ping |
Author_FL_xml | – sequence: 1 fullname: WANG Dan – sequence: 2 fullname: WANG Meng – sequence: 3 fullname: WANG Xiaoxi – sequence: 4 fullname: YANG Ping |
Author_xml | – sequence: 1 fullname: 王丹 – sequence: 2 fullname: 王萌 – sequence: 3 fullname: 王晓曦 – sequence: 4 fullname: 杨萍 |
BookMark | eNotj81Kw0AUhWdRobX2AXwEF9F75yaTzlKKf1Bwo-syE5NikCkYi3VftCAYFxVBQaQLEaF2IRb8eZwmad7CiC4OZ3e-8y2ykukYn7FlhFVESWJNh92TnuaAEggAZIlVgDu2BUBumdWi6FAD2Fy6SFRhIhs-zz6v5oOXLB4nX9P5ZJKP-un7ZXbXz-_P08F18h0no4f8Ik7GT7OPx-z1Nn27WWILgTqK_Np_V9n-5sZeY9tq7m7tNNabVoRgO5anBNUD0pyj6wOiS57SCkAgauBAQnJPeRK5K22yiavimFYkVT0AXYSqbOVv91SZQJl2K-x0j01BbOmwfXbQ-xUtVBHAoR9egVz5 |
ClassificationCodes | U461%TP308 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11936/bjutxb2019030009 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Ensemble of Incremental Learning Algorithm for Flight Delay Prediction |
EndPage | 1245 |
ExternalDocumentID | bjgydxxb202011005 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61672505) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 P2P PSX TCJ TGT U1G U5M |
ID | FETCH-LOGICAL-s1045-ca638f3b2217e01173caba00611b0203692cac9127943432a042ba39a8f0b8f03 |
ISSN | 0254-0037 |
IngestDate | Thu May 29 03:59:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | 选择性集成 集成学习 机器学习 增量学习 航班延误 分类与回归树(CART)算法 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1045-ca638f3b2217e01173caba00611b0203692cac9127943432a042ba39a8f0b8f03 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_bjgydxxb202011005 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 北京工业大学学报 |
PublicationTitle_FL | Journal of Beijing University of Technology |
PublicationYear | 2020 |
Publisher | 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200 |
Publisher_xml | – name: 北京工业大学信息学部,北京 100124%国家电网管理学院,北京 102200 |
SSID | ssib004297133 ssib051370302 ssj0039890 ssib001129165 ssib002263171 |
Score | 2.2866383 |
Snippet | U461%TP308; 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1239 |
Title | 用于航班延误预测的集成式增量学习算法 |
URI | https://d.wanfangdata.com.cn/periodical/bjgydxxb202011005 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 0254-0037 databaseCode: ADMLS dateStart: 20180110 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssj0039890 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEF9q-6IP4id-U8R5kmh2N3e3-7iXXClifbGFvpX7SCp9iGBTqH0uWhCsD4qgINIHEaH2QRT8-BP8M5qm_S-cmVySq41QG5Jj2dmdndnf3c3MZm9OiBtlncoYDX0pM5kuVTKV0X3QR0D8cpLiJ-B_TKfu-ZMzlTuz3uzIsd-FXUtLreRWujL0uZKjoIp1iCs9JfsfyPaZYgWWEV88IsJ4PBTGEAVgK-AMRBUIHZgIIgPGgHNEMhPgahB5EIYQ-kRyE_SNLDgFpgKRD6EHJmQ-jmss2BCMTyTkY8vcvUqssIC9bERtTNCrqYHzeXTkWSY-LgIbMGcN3Rdb9nxfam-qTGVpXZWZYxePawzJQDxRo6DAvF9AkbCX1ztHWMWIxefeoR1CYR1MdQjFB4vKai6EyH_QBCtqPKndzrXiygiGwXLfyshRtUISgiFZK8mo9Ek4v5rGV9WDzG9SNitVAeURDQUPGWGcdUKYTweEFAtYb2UOiOMC6eLvG8byifCPYVQ3uWvPTGCIX6I0QkWbli_r5teuLFgo9FRswdtBib3hltTyu36ShaXWcqIo44Amf3zgNvQ3cyYL84-zZWrEziQlFB5Tge-rUTHmalN37w_cc3QuZeFfdXT90X2VRd8okIPww5Oa7FE_HZy2Jl8zzTXOdymQqLf_FpQfwms24uZ8wV-cPiVO5oHeuOtetafFyMqDM-JEIf3nWeF3Xn7c_vF8d-1TZ32z_fPb7tbW3sbqztdnnTere2-f7Ky9aP9ab2-823u63t78sP39fefz650vr86JmYloujpZyt9jUlqUGDGV0hiNXEMnCsP_OuVg1GmcxBQ8yIQ3AliVxqmVipM1ahXjRCSxtrFplBP86fNitPmwWb8gxrN6Q3sxGuIYG-F91Jp67DWkl-KUZPWkfFFcz7Wey-9Ti3MH8Ll0mEaXxfHBNXVFjLYeLdWvov_dSq7lsP4B8s2fkA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%94%A8%E4%BA%8E%E8%88%AA%E7%8F%AD%E5%BB%B6%E8%AF%AF%E9%A2%84%E6%B5%8B%E7%9A%84%E9%9B%86%E6%88%90%E5%BC%8F%E5%A2%9E%E9%87%8F%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E4%B8%B9&rft.au=%E7%8E%8B%E8%90%8C&rft.au=%E7%8E%8B%E6%99%93%E6%9B%A6&rft.au=%E6%9D%A8%E8%90%8D&rft.date=2020-11-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%83%A8%2C%E5%8C%97%E4%BA%AC+100124%25%E5%9B%BD%E5%AE%B6%E7%94%B5%E7%BD%91%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+102200&rft.issn=0254-0037&rft.volume=46&rft.issue=11&rft.spage=1239&rft.epage=1245&rft_id=info:doi/10.11936%2Fbjutxb2019030009&rft.externalDocID=bjgydxxb202011005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjgydxxb%2Fbjgydxxb.jpg |