基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法

TM912; 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了 一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过程中动态地辨识了锂离子电池等效电路模型的各项参数,构建了工况不敏感的健康因子,结合稀疏高斯过程回归实现SOH的间接估计.该方法在多种工况下使用统一的信号处理方法和特征映射模型,兼具鲁棒性强和冗余度低的优点.实验结果表明,该方法在多种工况下的平均绝对误差不超过0.94%,均方根误差不超过1.12%,与现有方法相比,该方法在综合性能上具有显著优势....

Full description

Saved in:
Bibliographic Details
Published in上海交通大学学报 Vol. 58; no. 5; pp. 747 - 759
Main Authors 崔显, 陈自强
Format Journal Article
LanguageChinese
Published 上海交通大学海洋工程国家重点实验室,上海 200240 28.05.2024
Subjects
Online AccessGet full text
ISSN1006-2467
DOI10.16183/j.cnki.jsjtu.2022.221

Cover

Abstract TM912; 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了 一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过程中动态地辨识了锂离子电池等效电路模型的各项参数,构建了工况不敏感的健康因子,结合稀疏高斯过程回归实现SOH的间接估计.该方法在多种工况下使用统一的信号处理方法和特征映射模型,兼具鲁棒性强和冗余度低的优点.实验结果表明,该方法在多种工况下的平均绝对误差不超过0.94%,均方根误差不超过1.12%,与现有方法相比,该方法在综合性能上具有显著优势.
AbstractList TM912; 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了 一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过程中动态地辨识了锂离子电池等效电路模型的各项参数,构建了工况不敏感的健康因子,结合稀疏高斯过程回归实现SOH的间接估计.该方法在多种工况下使用统一的信号处理方法和特征映射模型,兼具鲁棒性强和冗余度低的优点.实验结果表明,该方法在多种工况下的平均绝对误差不超过0.94%,均方根误差不超过1.12%,与现有方法相比,该方法在综合性能上具有显著优势.
Abstract_FL Accurately estimating the state of health(SOH)of lithium-ion batteries is of great significance in ensuring the safe operation of the battery system.Addressing the issue where traditional SOH estimation methods fail under variable working conditions,an online SOH estimation method for lithium-ion batteries based on equivalent circuit model(ECM)and sparse Gaussian process regression(SGPR)is proposed.During the constant current charging process,the parameters of the ECM of lithium-ion battery are dynamically identified by two online filters,based on which,a condition-insensitive health indicator is constructed.In combination with the SGPR,the indirect SOH estimation is achieved.This method uses the unified signal processing method and feature mapping model under various working conditions,and features strong robustness with low redundancy.The experimental results show that the average absolute error of the method proposed under various working conditions does not exceed 0.94%,and the root mean square error stays below 1.12%.When benchmarked against existing methods,this method has significant advantages in comprehensive performance.
Author 陈自强
崔显
AuthorAffiliation 上海交通大学海洋工程国家重点实验室,上海 200240
AuthorAffiliation_xml – name: 上海交通大学海洋工程国家重点实验室,上海 200240
Author_FL CUI Xian
CHEN Ziqiang
Author_FL_xml – sequence: 1
  fullname: CUI Xian
– sequence: 2
  fullname: CHEN Ziqiang
Author_xml – sequence: 1
  fullname: 崔显
– sequence: 2
  fullname: 陈自强
BookMark eNotj8tKw0AYRmdRwVr7Cu5dJM7_ZzJpl1LaKlQUL-syyaTaKCk4LXbZSlciIqWKuFERdSGKF1SMPk6TmLcwoKtvcziHb4pk_JbvEjIDVAcOBWPO0x1_u6l7ymt3dKSIOiJkSBYo5Roybk2SvFJNm5pgcKvAaZZUwotgHByVS0vh8HCturIanw-S-7PkpR9dD6PeXTLaj2-_wofjePQWPV-G_Zsw-IgP3qNef_z99PN4FZ1-Rq8n02SiIXaUm__fHNmolNdLC1ptubpYmq9pCigzNYe7jgNYAAeNIlJpC2mbTHJuOUW0GoAWIpOCgbAtcCXYgjKZsgZ3uSmRGjky--fdE35D-Jt1r9XZ9dNiXW15bdnt2ultRk0KpvELqHFoig
ClassificationCodes TM912
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16183/j.cnki.jsjtu.2022.221
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL A Highly Robust State of Health Estimation Method for Lithium-lon Batteries Based on ECM and SGPR
EndPage 759
ExternalDocumentID shjtdxxb202405015
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (51677119)
GroupedDBID -03
2B.
4A8
5XA
5XD
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1045-c6ecc1281c23920dbadb54d667c927f127224da41ab71ed1ba04dc2336e65d203
ISSN 1006-2467
IngestDate Thu May 29 03:56:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 健康状态
sparse Gaussian process regression(SGPR)
health indicator
state of health(SOH)
锂离子电池
健康因子
粒子滤波
particle filter
lithium-ion battery
稀疏高斯过程回归
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1045-c6ecc1281c23920dbadb54d667c927f127224da41ab71ed1ba04dc2336e65d203
PageCount 13
ParticipantIDs wanfang_journals_shjtdxxb202405015
PublicationCentury 2000
PublicationDate 2024-05-28
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-28
  day: 28
PublicationDecade 2020
PublicationTitle 上海交通大学学报
PublicationTitle_FL Journal of Shanghai Jiaotong University
PublicationYear 2024
Publisher 上海交通大学海洋工程国家重点实验室,上海 200240
Publisher_xml – name: 上海交通大学海洋工程国家重点实验室,上海 200240
SSID ssib051367860
ssib002258139
ssib023167927
ssj0040338
ssib001128960
ssib057620143
Score 2.436238
Snippet TM912; 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了 一种基于等效电路模型和稀疏高斯过...
SourceID wanfang
SourceType Aggregation Database
StartPage 747
Title 基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法
URI https://d.wanfangdata.com.cn/periodical/shjtdxxb202405015
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1006-2467
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0040338
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1006-2467
  databaseCode: ADMLS
  dateStart: 20220401
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620143
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgR6wd-U8SAHnbNZJNMcsxspxahItpCb2W-1rrCCu4WSk-teBIRKVXEi4qoB1H8QMXqn9Pdtf-F72XS7mB7qL2ETPLy8pv3JvNeZua98bzznMU5y1JVUQ0MyeE5r6gajStKCti6-Tn3AwxOnrwqJ6b5lRkxM7RvtfTV0nwnqaaLO8aV7EWr0AZ6xSjZ_9DsFlNogDroF0rQMJS70jGJBNHjJDQk4liqKKpP2kZGVP3G5WvXSRQQDR2cRJqYkGiFlRC6fRJJYmpIChVFiQmwS4NvyXCUkSQMkZcZI5paPjCHQOLQJ4ZiFzAxAiswdxggjYKKdAxxChhSJyEQK2IiYuykGjhoywdmF2Xv2NIrZIK9wvK0J2Ysfvwow1hI3KK12ADnoCJxrBGbV5GFxhE4TqtIGA164FSBo0JkCs7W8kWspvwchHF8he_iyvHK3SvCLWKJgJQVLByi9KBUrkWHJByzoyIrRo3Q1JgVLLNCs106stoEtdZdC0zH6tuxYb5IVuSpcoYHn-wwXvyaZNMyCVVagaJkZoIiS6nzWIIip_o2Yyjhdm2tYdq6favabDc781WQHKuyIij9n0Tj7blmJ1tYSFC4VFDM3LCfga2kpQcV1skGl0bLcvS0UKXcsgxzK2i25dQKTAqoBvQCWdqkkoW_xGmtVgSsOgm4OH5Ef2lH7Da-rtWIWzdLruDUIe-g28ONmmJBjnhDi3OHvRFnJdujF1wq94tHvPHui7X1tUewKrsrD3E99p_f33j_bOPLcu_1Sm_p3cbqvf7bX90Pj_ur33qfX3aX33TXfvQffO8tLa___vTn46ve05-9r0-OetPj0VR9ouL-XFJp-7BHqqQS7oz4jjplsP-gWRJnieCZlEEKkmn4LADPOYu5HyeBn2d-ElOeAW1N5lJkjNaOecOtO638uDcaJDRTKm6kUiTAgeocJJgrToM0ThNOT3jnnDBm3Z2pPbtNkyd3Q3TKOzBYV6e94c7d-fwMeNyd5Ky9AP4CP6qi9g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EECM%E5%92%8CSGPR%E7%9A%84%E9%AB%98%E9%B2%81%E6%A3%92%E6%80%A7%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0%E5%81%A5%E5%BA%B7%E7%8A%B6%E6%80%81%E4%BC%B0%E8%AE%A1%E6%96%B9%E6%B3%95&rft.jtitle=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%B4%94%E6%98%BE&rft.au=%E9%99%88%E8%87%AA%E5%BC%BA&rft.date=2024-05-28&rft.pub=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B8%8A%E6%B5%B7+200240&rft.issn=1006-2467&rft.volume=58&rft.issue=5&rft.spage=747&rft.epage=759&rft_id=info:doi/10.16183%2Fj.cnki.jsjtu.2022.221&rft.externalDocID=shjtdxxb202405015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb%2Fshjtdxxb.jpg