基于改进YOLOv8s的轻量级果园李子检测方法

S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网络Faster-EMA缩减模型复杂度、提高检测精度.其次,引入焦点调制网络(focal modulation)替换原模型中的SPPF模块增强特征融合能力,丰富特征提取的语义信息;最后,引入参数共享策略并实现轻量级检测头LDetect,满足了低功耗嵌入式设备部署需求.试验结果表明,优化后模型的平均检测精度达到97.2%,与原模型相比,检测精度提高了 7.4个百分点;模型计算量降低了 44.8%;模型参数数量减小了 25.8%;部...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 41; no. 1; pp. 154 - 160
Main Authors 张冬妍, 陈诺, 张淇, 吴晨旭, 张榄翔
Format Journal Article
LanguageChinese
Published 东北林业大学计算机与控制工程学院,哈尔滨 150040 2025
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202408158

Cover

Abstract S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网络Faster-EMA缩减模型复杂度、提高检测精度.其次,引入焦点调制网络(focal modulation)替换原模型中的SPPF模块增强特征融合能力,丰富特征提取的语义信息;最后,引入参数共享策略并实现轻量级检测头LDetect,满足了低功耗嵌入式设备部署需求.试验结果表明,优化后模型的平均检测精度达到97.2%,与原模型相比,检测精度提高了 7.4个百分点;模型计算量降低了 44.8%;模型参数数量减小了 25.8%;部署在边缘计算设备JetsonNano4GB上,检测帧率达到了 48.3帧/s.该研究所提出的方法能有效的解决复杂背景下果园李子的智能化检测,有助于促进李子智能化采摘技术的发展.
AbstractList S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网络Faster-EMA缩减模型复杂度、提高检测精度.其次,引入焦点调制网络(focal modulation)替换原模型中的SPPF模块增强特征融合能力,丰富特征提取的语义信息;最后,引入参数共享策略并实现轻量级检测头LDetect,满足了低功耗嵌入式设备部署需求.试验结果表明,优化后模型的平均检测精度达到97.2%,与原模型相比,检测精度提高了 7.4个百分点;模型计算量降低了 44.8%;模型参数数量减小了 25.8%;部署在边缘计算设备JetsonNano4GB上,检测帧率达到了 48.3帧/s.该研究所提出的方法能有效的解决复杂背景下果园李子的智能化检测,有助于促进李子智能化采摘技术的发展.
Abstract_FL Plum fruit is often requiring timely harvesting during specific seasons,due to the significant nutritional and culinary value.However,it is still challenging to accurately detect the plums in real-world orchard environments,such as the shading from foliage,and the overlapping of fruits.These influencing factors have also posed the higher demands on intelligent harvesting,in terms of speed,accuracy and real-time performance.In this study,an efficient and reliable fruit detection model was proposed to fully meet the specific needs of the plums in the complex orchard environments using an enhanced and lightweight version of YOLOv8s.Firstly,the backbone network(named Faster-EMA)was developed to reduce the overall complexity of the model with the high detection accuracy.The architecture of the backbone network was optimized to more effectively extract the critical features from the input images,even when the plums were occluded by branches or surrounded by other fruits.The optimal network structure was then achieved for the accurate detection with the few computational resources.Secondly,Focal Modulation was introduced to replace the spatial pyramid pooling(SPPF)module in original YOLOv8s.The multi-scale features were integrated to detect the plums at different sizes under varying environmental conditions.The semantic information was also captured during feature extraction.The key aspects of the plums were then focused(such as the shape and color),rather than the less relevant background elements.The feature fusion mechanism was significantly enhanced the overall performance of the model.Thirdly,the parameter-sharing strategy(LDetect)was introduced to implement the lightweight detection head.The parameters were shared across different branches of the detection head,in order to maintain the high detection performance while significantly reducing the number of parameters and computational complexity.This lightweight detection head was designed specifically to meet the deployment requirements of low-power embedded devices,such as edge computing platforms.The efficiency of the model was particularly advantageous for the real-time applications,indicating the rapid detection and decision making.The experiment was also validated the effectiveness of the improved model.In terms of the average detection accuracy,the mean average precision(mAP)reached an impressive 97.2%,which was a 7.4 percentage point over the baseline YOLOv8s model.Additionally,the optimal model was reduced the computational load,with a 44.8%decrease in floating point operations(FLOPs),and a 25.8%reduction in the number of model parameters.The more efficient model was achieved with the processing time and memory usage.The detection frame rate was achieved 48.3 frames per second,when the improved model was deployed on the Jetson Nano 4GB(low-power edge computing device),thus enabling real-time detection even in resource-constrained environments.In conclusion,the lightweight model can be expected to effectively detect the plums under the complex orchard backgrounds,environmental variations and occlusions.Both high accuracy and computational efficiency were achieved to incorporate the Faster-EMA,Focal Modulation,and the lightweight detection head(LDetect).The successful deployment of this model on the edge computing devices can represented the significant step toward to the intelligent plum harvesting.The finding can provide a viable solution to the automated fruit picking in dynamic orchard environments.The valuable insights can also offer for the real-time detection in agricultural robotics and precision farming.
Author 陈诺
吴晨旭
张榄翔
张淇
张冬妍
AuthorAffiliation 东北林业大学计算机与控制工程学院,哈尔滨 150040
AuthorAffiliation_xml – name: 东北林业大学计算机与控制工程学院,哈尔滨 150040
Author_FL ZHANG Lanxiang
ZHANG Qi
CHEN Nuo
ZHANG Dongyan
WU Chenxu
Author_FL_xml – sequence: 1
  fullname: ZHANG Dongyan
– sequence: 2
  fullname: CHEN Nuo
– sequence: 3
  fullname: ZHANG Qi
– sequence: 4
  fullname: WU Chenxu
– sequence: 5
  fullname: ZHANG Lanxiang
Author_xml – sequence: 1
  fullname: 张冬妍
– sequence: 2
  fullname: 陈诺
– sequence: 3
  fullname: 张淇
– sequence: 4
  fullname: 吴晨旭
– sequence: 5
  fullname: 张榄翔
BookMark eNo9j7tKA0EYhaeIYIx5CgurXf-57cyUErzBwjZaWIXd2Z2QIBNw8NZZCBZCtFAL46WwsEolFlkRX8adxLcwoFgdOMV3vrOAarZvC4SWMIQYK8FXemHXORtiABJEEquQAGEgMZc1VP9v51HTuW4GHFMBwHAdieqp_CoH_no8_RzuJnFyKN3k7mz68f59fjkpX_zjfTUc-YdBNbryz6f-7cLfjv3rzSKaM-meK5p_2UA762vbrc0gTja2Wqtx4DAwHpAINEmNURoiUggeyUwawVKdzxSwVIWhJmLMEC20gEzlOaOQC6pVTqTICW2g5V_uUWpNajvtXv9g384W2_ako4-z2U0OGDCnP-LXXXE
ClassificationCodes S24
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202408158
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Detecting plum fruits in orchard using lightweight improved YOLOv8s
EndPage 160
ExternalDocumentID nygcxb202501015
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (32202147)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1045-260c2aff9c062e7568b8f74acd513189ef3f644f2c7c70b9dd430d73c9d287d23
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords plum
target detection
目标检测
YOLOv8
LDetect
轻量化
李子
lightweight optimization
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1045-260c2aff9c062e7568b8f74acd513189ef3f644f2c7c70b9dd430d73c9d287d23
PageCount 7
ParticipantIDs wanfang_journals_nygcxb202501015
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2025
Publisher 东北林业大学计算机与控制工程学院,哈尔滨 150040
Publisher_xml – name: 东北林业大学计算机与控制工程学院,哈尔滨 150040
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4961092
Snippet S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网...
SourceID wanfang
SourceType Aggregation Database
StartPage 154
Title 基于改进YOLOv8s的轻量级果园李子检测方法
URI https://d.wanfangdata.com.cn/periodical/nygcxb202501015
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELbykBAUiKd4KxK4Qhu8Lz9K792eIoRIk0ihiu6861AdUi5BkIoCiQIpoQAKwqOgoEqFKBKE-DNkE_4FM17fXRLCs7F83pnxfJ71zXhljwm5xoq4ZFaxwIQhD5KyXQZSGRWUhVU2tCYuCrfL9zafmk1uzqVzI6Nre3YtLS91Js3KoedK_seq0AZ2xVOy_2DZgVBogDrYF0qwMJR_ZWOap1S1aKZpnmApc5pzqqCuaC5p1qIquzN9a_q-7NFcUAUUiXvQpFlGc0WloLKFj4BZC8ecU9VwcjOqm66l6eSm-FMxbNEx7o-ASpZSmTka7rqEMqb1bZb9gBcZJXcyQS2JOkBLJqhOsV8tnQQnXHOUIEGTtP8aONoG1cyL0U41IJTNIYmiCpBIBKZxMA5h5tjj0OU6fIxmidNdoRZYAXWae7-C1Gel3Rvb1971LxtI6wdL7AOmEzeOAzygUk516KDmfa5G32LSWwzKmgtQZPy3A-TA6ghmhgMRO-BAz9DsiBPMJq9D_M3q_FTe4aBH4tK7De-R6lRg-2Ze7V7COuG2j1TC-iaGn52gEqnzgtjD5KCHycjlswvrVPkHsox3Hy6YBx0cWUw6mI6S8UhA6DZGxnXWzFrDCDvEjwgDFxBhIgU-XLGmYYz3JQx2WeEeg9RtOPBKHCFX-yre-LWC7gRd17a7C3uCvZkT5LhfpU3oesqdJCMrd0-RY3ph0WeqKU8Tsf1u69vWavV8c_frup9kO68e7375_P3J2s7Wh-rt6-31jerN6vbGs-r9o-rT0-rlZvXxxRky28pnGlOBv4Uk6IWw3glgwW-itrXKMB6VIuWyI61I2qYAsKFUpY0tLCpsZIQRrKOKIolZIWKjikiKIorPkrHuvW55jkwkwrA4NazgChhiK8sEVv-JBbcaSl6U58mEhz3v_2V68wcMc-HPJBfJUazX3wkvkbGlxeXyMkTOS50r3po_ANTej2c
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BYOLOv8s%E7%9A%84%E8%BD%BB%E9%87%8F%E7%BA%A7%E6%9E%9C%E5%9B%AD%E6%9D%8E%E5%AD%90%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%86%AC%E5%A6%8D&rft.au=%E9%99%88%E8%AF%BA&rft.au=%E5%BC%A0%E6%B7%87&rft.au=%E5%90%B4%E6%99%A8%E6%97%AD&rft.date=2025&rft.pub=%E4%B8%9C%E5%8C%97%E6%9E%97%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%93%88%E5%B0%94%E6%BB%A8+150040&rft.issn=1002-6819&rft.volume=41&rft.issue=1&rft.spage=154&rft.epage=160&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202408158&rft.externalDocID=nygcxb202501015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg