基于改进YOLOv8s的轻量级果园李子检测方法
S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网络Faster-EMA缩减模型复杂度、提高检测精度.其次,引入焦点调制网络(focal modulation)替换原模型中的SPPF模块增强特征融合能力,丰富特征提取的语义信息;最后,引入参数共享策略并实现轻量级检测头LDetect,满足了低功耗嵌入式设备部署需求.试验结果表明,优化后模型的平均检测精度达到97.2%,与原模型相比,检测精度提高了 7.4个百分点;模型计算量降低了 44.8%;模型参数数量减小了 25.8%;部...
Saved in:
Published in | 农业工程学报 Vol. 41; no. 1; pp. 154 - 160 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
东北林业大学计算机与控制工程学院,哈尔滨 150040
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.202408158 |
Cover
Abstract | S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网络Faster-EMA缩减模型复杂度、提高检测精度.其次,引入焦点调制网络(focal modulation)替换原模型中的SPPF模块增强特征融合能力,丰富特征提取的语义信息;最后,引入参数共享策略并实现轻量级检测头LDetect,满足了低功耗嵌入式设备部署需求.试验结果表明,优化后模型的平均检测精度达到97.2%,与原模型相比,检测精度提高了 7.4个百分点;模型计算量降低了 44.8%;模型参数数量减小了 25.8%;部署在边缘计算设备JetsonNano4GB上,检测帧率达到了 48.3帧/s.该研究所提出的方法能有效的解决复杂背景下果园李子的智能化检测,有助于促进李子智能化采摘技术的发展. |
---|---|
AbstractList | S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网络Faster-EMA缩减模型复杂度、提高检测精度.其次,引入焦点调制网络(focal modulation)替换原模型中的SPPF模块增强特征融合能力,丰富特征提取的语义信息;最后,引入参数共享策略并实现轻量级检测头LDetect,满足了低功耗嵌入式设备部署需求.试验结果表明,优化后模型的平均检测精度达到97.2%,与原模型相比,检测精度提高了 7.4个百分点;模型计算量降低了 44.8%;模型参数数量减小了 25.8%;部署在边缘计算设备JetsonNano4GB上,检测帧率达到了 48.3帧/s.该研究所提出的方法能有效的解决复杂背景下果园李子的智能化检测,有助于促进李子智能化采摘技术的发展. |
Abstract_FL | Plum fruit is often requiring timely harvesting during specific seasons,due to the significant nutritional and culinary value.However,it is still challenging to accurately detect the plums in real-world orchard environments,such as the shading from foliage,and the overlapping of fruits.These influencing factors have also posed the higher demands on intelligent harvesting,in terms of speed,accuracy and real-time performance.In this study,an efficient and reliable fruit detection model was proposed to fully meet the specific needs of the plums in the complex orchard environments using an enhanced and lightweight version of YOLOv8s.Firstly,the backbone network(named Faster-EMA)was developed to reduce the overall complexity of the model with the high detection accuracy.The architecture of the backbone network was optimized to more effectively extract the critical features from the input images,even when the plums were occluded by branches or surrounded by other fruits.The optimal network structure was then achieved for the accurate detection with the few computational resources.Secondly,Focal Modulation was introduced to replace the spatial pyramid pooling(SPPF)module in original YOLOv8s.The multi-scale features were integrated to detect the plums at different sizes under varying environmental conditions.The semantic information was also captured during feature extraction.The key aspects of the plums were then focused(such as the shape and color),rather than the less relevant background elements.The feature fusion mechanism was significantly enhanced the overall performance of the model.Thirdly,the parameter-sharing strategy(LDetect)was introduced to implement the lightweight detection head.The parameters were shared across different branches of the detection head,in order to maintain the high detection performance while significantly reducing the number of parameters and computational complexity.This lightweight detection head was designed specifically to meet the deployment requirements of low-power embedded devices,such as edge computing platforms.The efficiency of the model was particularly advantageous for the real-time applications,indicating the rapid detection and decision making.The experiment was also validated the effectiveness of the improved model.In terms of the average detection accuracy,the mean average precision(mAP)reached an impressive 97.2%,which was a 7.4 percentage point over the baseline YOLOv8s model.Additionally,the optimal model was reduced the computational load,with a 44.8%decrease in floating point operations(FLOPs),and a 25.8%reduction in the number of model parameters.The more efficient model was achieved with the processing time and memory usage.The detection frame rate was achieved 48.3 frames per second,when the improved model was deployed on the Jetson Nano 4GB(low-power edge computing device),thus enabling real-time detection even in resource-constrained environments.In conclusion,the lightweight model can be expected to effectively detect the plums under the complex orchard backgrounds,environmental variations and occlusions.Both high accuracy and computational efficiency were achieved to incorporate the Faster-EMA,Focal Modulation,and the lightweight detection head(LDetect).The successful deployment of this model on the edge computing devices can represented the significant step toward to the intelligent plum harvesting.The finding can provide a viable solution to the automated fruit picking in dynamic orchard environments.The valuable insights can also offer for the real-time detection in agricultural robotics and precision farming. |
Author | 陈诺 吴晨旭 张榄翔 张淇 张冬妍 |
AuthorAffiliation | 东北林业大学计算机与控制工程学院,哈尔滨 150040 |
AuthorAffiliation_xml | – name: 东北林业大学计算机与控制工程学院,哈尔滨 150040 |
Author_FL | ZHANG Lanxiang ZHANG Qi CHEN Nuo ZHANG Dongyan WU Chenxu |
Author_FL_xml | – sequence: 1 fullname: ZHANG Dongyan – sequence: 2 fullname: CHEN Nuo – sequence: 3 fullname: ZHANG Qi – sequence: 4 fullname: WU Chenxu – sequence: 5 fullname: ZHANG Lanxiang |
Author_xml | – sequence: 1 fullname: 张冬妍 – sequence: 2 fullname: 陈诺 – sequence: 3 fullname: 张淇 – sequence: 4 fullname: 吴晨旭 – sequence: 5 fullname: 张榄翔 |
BookMark | eNo9j7tKA0EYhaeIYIx5CgurXf-57cyUErzBwjZaWIXd2Z2QIBNw8NZZCBZCtFAL46WwsEolFlkRX8adxLcwoFgdOMV3vrOAarZvC4SWMIQYK8FXemHXORtiABJEEquQAGEgMZc1VP9v51HTuW4GHFMBwHAdieqp_CoH_no8_RzuJnFyKN3k7mz68f59fjkpX_zjfTUc-YdBNbryz6f-7cLfjv3rzSKaM-meK5p_2UA762vbrc0gTja2Wqtx4DAwHpAINEmNURoiUggeyUwawVKdzxSwVIWhJmLMEC20gEzlOaOQC6pVTqTICW2g5V_uUWpNajvtXv9g384W2_ako4-z2U0OGDCnP-LXXXE |
ClassificationCodes | S24 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.202408158 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitle_FL | Detecting plum fruits in orchard using lightweight improved YOLOv8s |
EndPage | 160 |
ExternalDocumentID | nygcxb202501015 |
GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (32202147) |
GroupedDBID | -04 2B. 4A8 5XA 5XE 92G 92I 93N ABDBF ABJNI ACGFO ACGFS ACUHS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CW9 EOJEC FIJ IPNFZ OBODZ PSX RIG TCJ TGD TUS U1G U5N |
ID | FETCH-LOGICAL-s1045-260c2aff9c062e7568b8f74acd513189ef3f644f2c7c70b9dd430d73c9d287d23 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:08:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | plum target detection 目标检测 YOLOv8 LDetect 轻量化 李子 lightweight optimization |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1045-260c2aff9c062e7568b8f74acd513189ef3f644f2c7c70b9dd430d73c9d287d23 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb202501015 |
PublicationCentury | 2000 |
PublicationDate | 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | 农业工程学报 |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2025 |
Publisher | 东北林业大学计算机与控制工程学院,哈尔滨 150040 |
Publisher_xml | – name: 东北林业大学计算机与控制工程学院,哈尔滨 150040 |
SSID | ssib051370041 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.4961092 |
Snippet | S24; 为了解决果园李子受枝叶和果实遮蔽、环境变化等因素影响,难以准确检测的问题,该研究提出了一种基于改进YOLOv8s的轻量级果园李子检测模型.首先,采用自设计主干网... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 154 |
Title | 基于改进YOLOv8s的轻量级果园李子检测方法 |
URI | https://d.wanfangdata.com.cn/periodical/nygcxb202501015 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELbykBAUiKd4KxK4Qhu8Lz9K792eIoRIk0ihiu6861AdUi5BkIoCiQIpoQAKwqOgoEqFKBKE-DNkE_4FM17fXRLCs7F83pnxfJ71zXhljwm5xoq4ZFaxwIQhD5KyXQZSGRWUhVU2tCYuCrfL9zafmk1uzqVzI6Nre3YtLS91Js3KoedK_seq0AZ2xVOy_2DZgVBogDrYF0qwMJR_ZWOap1S1aKZpnmApc5pzqqCuaC5p1qIquzN9a_q-7NFcUAUUiXvQpFlGc0WloLKFj4BZC8ecU9VwcjOqm66l6eSm-FMxbNEx7o-ASpZSmTka7rqEMqb1bZb9gBcZJXcyQS2JOkBLJqhOsV8tnQQnXHOUIEGTtP8aONoG1cyL0U41IJTNIYmiCpBIBKZxMA5h5tjj0OU6fIxmidNdoRZYAXWae7-C1Gel3Rvb1971LxtI6wdL7AOmEzeOAzygUk516KDmfa5G32LSWwzKmgtQZPy3A-TA6ghmhgMRO-BAz9DsiBPMJq9D_M3q_FTe4aBH4tK7De-R6lRg-2Ze7V7COuG2j1TC-iaGn52gEqnzgtjD5KCHycjlswvrVPkHsox3Hy6YBx0cWUw6mI6S8UhA6DZGxnXWzFrDCDvEjwgDFxBhIgU-XLGmYYz3JQx2WeEeg9RtOPBKHCFX-yre-LWC7gRd17a7C3uCvZkT5LhfpU3oesqdJCMrd0-RY3ph0WeqKU8Tsf1u69vWavV8c_frup9kO68e7375_P3J2s7Wh-rt6-31jerN6vbGs-r9o-rT0-rlZvXxxRky28pnGlOBv4Uk6IWw3glgwW-itrXKMB6VIuWyI61I2qYAsKFUpY0tLCpsZIQRrKOKIolZIWKjikiKIorPkrHuvW55jkwkwrA4NazgChhiK8sEVv-JBbcaSl6U58mEhz3v_2V68wcMc-HPJBfJUazX3wkvkbGlxeXyMkTOS50r3po_ANTej2c |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BYOLOv8s%E7%9A%84%E8%BD%BB%E9%87%8F%E7%BA%A7%E6%9E%9C%E5%9B%AD%E6%9D%8E%E5%AD%90%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%86%AC%E5%A6%8D&rft.au=%E9%99%88%E8%AF%BA&rft.au=%E5%BC%A0%E6%B7%87&rft.au=%E5%90%B4%E6%99%A8%E6%97%AD&rft.date=2025&rft.pub=%E4%B8%9C%E5%8C%97%E6%9E%97%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%93%88%E5%B0%94%E6%BB%A8+150040&rft.issn=1002-6819&rft.volume=41&rft.issue=1&rft.spage=154&rft.epage=160&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202408158&rft.externalDocID=nygcxb202501015 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |