基于语义似然与高精度地图匹配的智能车辆同时定位与检测

TP242.6; 车载传感器数据与高精度地图的精确匹配是提升智能车辆感知与定位的关键.提出基于语义似然模型(SLM)的高精度地图匹配新算法,实现智能车辆同时定位与目标检测任务.首先通过U-Net提取路面语义目标,利用核密度估计建立SLM.基于粒子滤波框架,利用位姿变换将高精度地图上目标抽样点映射至SLM中,计算该抽样点与传感器数据的匹配程度对每个粒子的权重更新,实现智能车辆的高精度定位.最后利用定位结果完成地图上的要素目标到图像的映射,实现目标的精准检测.利用在校园道路与城市道路环境下采集的数据对所提算法进行验证,实验结果表明,算法的平均定位误差约为14 cm,路面路标检测结果平均交并比(MI...

Full description

Saved in:
Bibliographic Details
Published in上海交通大学学报 Vol. 58; no. 10; pp. 1618 - 1628
Main Authors 赖国良, 胡钊政, 周哲, 万金杰, 任靖渊
Format Journal Article
LanguageChinese
Published 武汉理工大学重庆研究院,重庆 401120 28.10.2024
武汉理工大学信息工程学院,武汉 430070
武汉理工大学智能交通系统研究中心,武汉 430063%武汉理工大学智能交通系统研究中心,武汉 430063
Subjects
Online AccessGet full text
ISSN1006-2467
DOI10.16183/j.cnki.jsjtu.2023.086

Cover

Abstract TP242.6; 车载传感器数据与高精度地图的精确匹配是提升智能车辆感知与定位的关键.提出基于语义似然模型(SLM)的高精度地图匹配新算法,实现智能车辆同时定位与目标检测任务.首先通过U-Net提取路面语义目标,利用核密度估计建立SLM.基于粒子滤波框架,利用位姿变换将高精度地图上目标抽样点映射至SLM中,计算该抽样点与传感器数据的匹配程度对每个粒子的权重更新,实现智能车辆的高精度定位.最后利用定位结果完成地图上的要素目标到图像的映射,实现目标的精准检测.利用在校园道路与城市道路环境下采集的数据对所提算法进行验证,实验结果表明,算法的平均定位误差约为14 cm,路面路标检测结果平均交并比(MIoU)均大于80.较之深度神经网络等当前最佳(SOTA)的检测方法,所提算法引入高精度地图的先验信息可显著提升智能车辆定位与目标检测性能.
AbstractList TP242.6; 车载传感器数据与高精度地图的精确匹配是提升智能车辆感知与定位的关键.提出基于语义似然模型(SLM)的高精度地图匹配新算法,实现智能车辆同时定位与目标检测任务.首先通过U-Net提取路面语义目标,利用核密度估计建立SLM.基于粒子滤波框架,利用位姿变换将高精度地图上目标抽样点映射至SLM中,计算该抽样点与传感器数据的匹配程度对每个粒子的权重更新,实现智能车辆的高精度定位.最后利用定位结果完成地图上的要素目标到图像的映射,实现目标的精准检测.利用在校园道路与城市道路环境下采集的数据对所提算法进行验证,实验结果表明,算法的平均定位误差约为14 cm,路面路标检测结果平均交并比(MIoU)均大于80.较之深度神经网络等当前最佳(SOTA)的检测方法,所提算法引入高精度地图的先验信息可显著提升智能车辆定位与目标检测性能.
Abstract_FL Accurate matching between in-vehicle sensor data and high-definition(HD)maps is crucial to improve the performance of perception and localization of intelligent vehicles.A novel algorithm of HD map matching based on the developed semantic likelihood model(SLM)is proposed to achieve intelligent vehicle localization and object detection simultaneously.First,semantic pavement objects are extracted from front-view images by using U-Net,and SLM is constructed with kernel density estimation(KDE).Under a particle filter framework,the likelihood between the sensor data and HD map is calculated by projecting each sample point from HD map with pose transformation onto SLM to update the weight of each particle.Simultaneously,accurate detection of pavement markings is accomplished by projecting all elements onto the HD map with the computed localization results.In the experiment,data collected on campus and on urban roads are used to validate the proposed algorithm.The experimental results show that the localization errors in both scenarios are about 14 cm,and the mean intersection over union(MIoU)of road marking detection is above 80.The results demonstrate that the proposed algorithm can significantly improve both localization and detection performance by effectively utilizing the prior information of HD maps,compared with the state of the art(SOTA)methods,such as deep learning-based detection methods.
Author 胡钊政
周哲
万金杰
任靖渊
赖国良
AuthorAffiliation 武汉理工大学信息工程学院,武汉 430070;武汉理工大学智能交通系统研究中心,武汉 430063%武汉理工大学智能交通系统研究中心,武汉 430063;武汉理工大学重庆研究院,重庆 401120
AuthorAffiliation_xml – name: 武汉理工大学信息工程学院,武汉 430070;武汉理工大学智能交通系统研究中心,武汉 430063%武汉理工大学智能交通系统研究中心,武汉 430063;武汉理工大学重庆研究院,重庆 401120
Author_FL WAN Jinjie
HU Zhaozheng
ZHOU Zhe
REN Jingyuan
LAI Guoliang
Author_FL_xml – sequence: 1
  fullname: LAI Guoliang
– sequence: 2
  fullname: HU Zhaozheng
– sequence: 3
  fullname: ZHOU Zhe
– sequence: 4
  fullname: WAN Jinjie
– sequence: 5
  fullname: REN Jingyuan
Author_xml – sequence: 1
  fullname: 赖国良
– sequence: 2
  fullname: 胡钊政
– sequence: 3
  fullname: 周哲
– sequence: 4
  fullname: 万金杰
– sequence: 5
  fullname: 任靖渊
BookMark eNotj8tKw0AYhWdRwVr7Cu5dJM4_M50Zl1K8QdGNrksm6WijpGBa7FKwCtIL7tQquBC6ES8IFhvaPk2Spm9hQFdnc853-JZQxqt5FYRWAJvAQdI117S9k6rp-m69YRJMqIklz6AsYMwNwrhYRHnfrypcAMqF5DiL9qLnIAx6ycdbOLoJx-NZaxj-9Oav97OvaRQMoqfP6HEadUbzq-6s34ofguRykkwGyfQ6uu3Ed8PovR9OuukkfrmIv9vLaEFbp34l_585dLi1eVDcMUr727vFjZLhA2bMsCVVlpRKYgYVcIAIcDBhDvCCLRjGGohNxbpQCjNFJGAtSFolimilJWiaQ6t_3HPL05Z3VHZrjTMvfSz7x27daTZVqs9Sb2D0F_oscSc
ClassificationCodes TP242.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16183/j.cnki.jsjtu.2023.086
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Simultaneous Detection and Localization for Intelligent Vehicles Based on HD Map Matching and Semantic Likelihood Model
EndPage 1628
ExternalDocumentID shjtdxxb202410014
GrantInformation_xml – fundername: (国家重点研发计划); (湖北省重点研发计划项目); (重庆市科技创新重大研发项目); (武汉市人工智能创新专项)
  funderid: (国家重点研发计划); (湖北省重点研发计划项目); (重庆市科技创新重大研发项目); (武汉市人工智能创新专项)
GroupedDBID -03
2B.
4A8
5XA
5XD
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1044-c83ba88b8041e1d1271d024d165c7400f12c3797bb04b2810f720412b2fbf81f3
ISSN 1006-2467
IngestDate Thu May 29 03:56:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords 语义似然模型
高精度地图
智能车辆定位
intelligent vehicle localization
粒子滤波
semantic likelihood model(SLM)
particle filter
high-definition(HD)map
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-c83ba88b8041e1d1271d024d165c7400f12c3797bb04b2810f720412b2fbf81f3
PageCount 11
ParticipantIDs wanfang_journals_shjtdxxb202410014
PublicationCentury 2000
PublicationDate 2024-10-28
PublicationDateYYYYMMDD 2024-10-28
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-28
  day: 28
PublicationDecade 2020
PublicationTitle 上海交通大学学报
PublicationTitle_FL Journal of Shanghai Jiaotong University
PublicationYear 2024
Publisher 武汉理工大学重庆研究院,重庆 401120
武汉理工大学信息工程学院,武汉 430070
武汉理工大学智能交通系统研究中心,武汉 430063%武汉理工大学智能交通系统研究中心,武汉 430063
Publisher_xml – name: 武汉理工大学智能交通系统研究中心,武汉 430063%武汉理工大学智能交通系统研究中心,武汉 430063
– name: 武汉理工大学重庆研究院,重庆 401120
– name: 武汉理工大学信息工程学院,武汉 430070
SSID ssib051367860
ssib002258139
ssib023167927
ssj0040338
ssib001128960
ssib057620143
Score 2.451588
Snippet TP242.6; 车载传感器数据与高精度地图的精确匹配是提升智能车辆感知与定位的关键.提出基于语义似然模型(SLM)的高精度地图匹配新算法,实现智能车辆同时定位与目标检测任务....
SourceID wanfang
SourceType Aggregation Database
StartPage 1618
Title 基于语义似然与高精度地图匹配的智能车辆同时定位与检测
URI https://d.wanfangdata.com.cn/periodical/shjtdxxb202410014
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1006-2467
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0040338
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1006-2467
  databaseCode: ADMLS
  dateStart: 20220401
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620143
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxcKn1xRexfuA3RQwosuduNtkkj9neHkWwTy30rdze3lornOBdofRJsApiW3xTq-CD0BfxA8Fij7b_wH9xe73-C2dyuXaxfajCkZtNZiaTmc3ObNhMHOcmr4NXomniiqzKXFYNqVuVsuoKXG9gLBBZhruR70-E41Ps3jSfHjrxu_DV0nwrKdUWj9xX8j9WhTqwK-6S_QfL7jOFCoDBvlCChaE8lo1JzImqkEiTmGEpYxJLoitEl02NIlIZYAx_sSAS4NDUSIOsiI6IktgUURLFyBD46NBwBirPAJFtkmPIE6gkwGWkUhp5xiFRyogBbAMSlRGAEvlIpJV9hh5yQGRhxOBEx8gB5SkbhvuChUQH-BEGABH0FRVj6AGatq2RsMPXzMjmGZ4cL7UwQNmOyAIh0mo-uNeMjCBdOBirER80pytFFBiY9rEDRW3fCnotoACxT7Q0ACiBHrT05RVGOoFYSFwG7RbXXChDZ2X3sOMsMVoYSBz5xpbCKNFICsPW_Khxmk5Qm8aWiAyYHkqLgDKqV2gwTWGCHca_Ay_DPvUK7grXgyjrH2gy8GdcFuetV_BOeDhCIdLxw_6YDnlRQAuMG601Hj0szTXnWvMlUENQ8v5OW24CoebsXCtdWEhQU5jSi51wTlJwsl5hhcNE5xALqbC47ZrLQlJaikkZFN2PhjlmE5QH-BxZmmyU_UCLeUHQ3-lqlWATAKD0d4-U3WzMa2TVxoNCDDl5xjltX_5GdX8mjzhDi7NnnRHrXpujt2wO-NvnnIn8Y7vTXu19-9LZfNnZ2tpd2uj8Wt37_Hb3x07eXs8_fM_f7-TLm3vPV3bXlrrv2r1n273t9d7Oi_z1cvfNRv51rbO9AiTdT0-7P1-dd6Yq8eTYuGuPPnGbvseYW5NBAs_MBLOD1f3Up8JPQbupH_KaALeb-bQWCCWSxGMJlb6X4WFTPk1olmTSz4ILznDjcaN-0RnNaCpSJtPUwz-eJikPvGqiUlZVCVfZJeeGVcqMfbQ1Zw5Z9PJxkK44pw4my1VnuPVkvn4NQvZWct3cCH8ARwq5fA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%AF%AD%E4%B9%89%E4%BC%BC%E7%84%B6%E4%B8%8E%E9%AB%98%E7%B2%BE%E5%BA%A6%E5%9C%B0%E5%9B%BE%E5%8C%B9%E9%85%8D%E7%9A%84%E6%99%BA%E8%83%BD%E8%BD%A6%E8%BE%86%E5%90%8C%E6%97%B6%E5%AE%9A%E4%BD%8D%E4%B8%8E%E6%A3%80%E6%B5%8B&rft.jtitle=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E8%B5%96%E5%9B%BD%E8%89%AF&rft.au=%E8%83%A1%E9%92%8A%E6%94%BF&rft.au=%E5%91%A8%E5%93%B2&rft.au=%E4%B8%87%E9%87%91%E6%9D%B0&rft.date=2024-10-28&rft.pub=%E6%AD%A6%E6%B1%89%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E9%87%8D%E5%BA%86%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E9%87%8D%E5%BA%86+401120&rft.issn=1006-2467&rft.volume=58&rft.issue=10&rft.spage=1618&rft.epage=1628&rft_id=info:doi/10.16183%2Fj.cnki.jsjtu.2023.086&rft.externalDocID=shjtdxxb202410014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb%2Fshjtdxxb.jpg