基于深度学习的红外可见光图像融合综述

TP391; 如何将多张图像中的互补信息保存到一张图像中用于全面表征场景是具有挑战性的课题.基于此课题,大量的图像融合方法被提出.红外可见光图像融合(IVIF)作为图像融合中一个重要分支,在语义分割、目标检测和军事侦察等实际领域都有着广泛的应用.近年来,深度学习技术引领了图像融合的发展方向,研究人员利用深度学习针对IVIF方向进行了探索.相关实验工作证明了应用深度学习方法来完成IVIF相较于传统方法有着显著优势.对基于深度学习的IVIF前沿算法进行了详细的分析论述.首先,从网络架构、方法创新以及局限性等方面报告了领域内的方法研究现状.其次,对IVIF方法中常用的数据集进行了简要介绍并给出了定量...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 4; pp. 899 - 915
Main Authors 王恩龙, 李嘉伟, 雷佳, 周士华
Format Journal Article
LanguageChinese
Published 大连大学 先进设计与智能计算教育部重点实验室,辽宁 大连 116622%北京科技大学 计算机与通信工程学院,北京 100083 01.04.2024
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2306061

Cover

Abstract TP391; 如何将多张图像中的互补信息保存到一张图像中用于全面表征场景是具有挑战性的课题.基于此课题,大量的图像融合方法被提出.红外可见光图像融合(IVIF)作为图像融合中一个重要分支,在语义分割、目标检测和军事侦察等实际领域都有着广泛的应用.近年来,深度学习技术引领了图像融合的发展方向,研究人员利用深度学习针对IVIF方向进行了探索.相关实验工作证明了应用深度学习方法来完成IVIF相较于传统方法有着显著优势.对基于深度学习的IVIF前沿算法进行了详细的分析论述.首先,从网络架构、方法创新以及局限性等方面报告了领域内的方法研究现状.其次,对IVIF方法中常用的数据集进行了简要介绍并给出了定量实验中常用评价指标的定义.对提到的一些具有代表性的方法进行了图像融合和语义分割的定性评估、定量评估实验以及融合效率分析实验来全方面地评估方法的性能.最后,给出了实验结论并对领域内未来可能的研究方向进行了展望.
AbstractList TP391; 如何将多张图像中的互补信息保存到一张图像中用于全面表征场景是具有挑战性的课题.基于此课题,大量的图像融合方法被提出.红外可见光图像融合(IVIF)作为图像融合中一个重要分支,在语义分割、目标检测和军事侦察等实际领域都有着广泛的应用.近年来,深度学习技术引领了图像融合的发展方向,研究人员利用深度学习针对IVIF方向进行了探索.相关实验工作证明了应用深度学习方法来完成IVIF相较于传统方法有着显著优势.对基于深度学习的IVIF前沿算法进行了详细的分析论述.首先,从网络架构、方法创新以及局限性等方面报告了领域内的方法研究现状.其次,对IVIF方法中常用的数据集进行了简要介绍并给出了定量实验中常用评价指标的定义.对提到的一些具有代表性的方法进行了图像融合和语义分割的定性评估、定量评估实验以及融合效率分析实验来全方面地评估方法的性能.最后,给出了实验结论并对领域内未来可能的研究方向进行了展望.
Abstract_FL How to preserve the complementary information in multiple images to represent the scene in one image is a challenging topic.Based on this topic,various image fusion methods have been proposed.As an important branch of image fusion,infrared and visible image fusion(IVIF)has a wide range of applications in segmentation,target detection and military reconnaissance fields.In recent years,deep learning has led the development direction of image fusion.Researchers have explored the field of IVIF using deep learning.Relevant experimental work has proven that applying deep learning to achieving IVIF has significant advantages compared with traditional methods.This paper provides a detailed analysis on the advanced algorithms for IVIF based on deep learning.Firstly,this paper reports on the current research status from the aspects of network architecture,method innovation,and limitations.Secondly,this paper introduces the commonly used datasets in IVIF methods and provides the definition of commonly used evaluation metrics in quantitative experiments.Qualitative and quantitative evaluation experiments of fusion and segmentation and fusion efficiency analysis experiments are conducted on some representative methods mentioned in the paper to comprehensively evaluate the performance of the methods.Finally,this paper provides conclusions and prospects for possible future research directions in the field.
Author 李嘉伟
周士华
王恩龙
雷佳
AuthorAffiliation 大连大学 先进设计与智能计算教育部重点实验室,辽宁 大连 116622%北京科技大学 计算机与通信工程学院,北京 100083
AuthorAffiliation_xml – name: 大连大学 先进设计与智能计算教育部重点实验室,辽宁 大连 116622%北京科技大学 计算机与通信工程学院,北京 100083
Author_FL WANG Enlong
ZHOU Shihua
LI Jiawei
LEI Jia
Author_FL_xml – sequence: 1
  fullname: WANG Enlong
– sequence: 2
  fullname: LI Jiawei
– sequence: 3
  fullname: LEI Jia
– sequence: 4
  fullname: ZHOU Shihua
Author_xml – sequence: 1
  fullname: 王恩龙
– sequence: 2
  fullname: 李嘉伟
– sequence: 3
  fullname: 雷佳
– sequence: 4
  fullname: 周士华
BookMark eNo9jT0vBEEYgKc4iXPuP2gVu-bj3XdmS7n4Si7RUF9mzo7ckrnEEJSChIJTKUgQkVMJKrGEP3Nj72eQENWTPMXzjJGK67qMkAlGYyGlmsrjjvcuZihFlAJTMRcUKbIKqf67UVL3vmNoAsCZRFUlGK6LQXH69fIcin546A9eb8qLg7K4DXfnofc4vN8Lh8fh8iPs94ZXJ-HsqHx7H34-jZMRq9d9Vv9jjSzPziw15qPm4txCY7oZeUYBIqW0BlQGDCaat8EaucI0z1BLpRODlksAIzggT6kVKLVMwTLazjJIkxRFjUz-dre1s9qttvLu1ob7ObZyn6_t7G56TjlQoBTEN2Q4X48
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2306061
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Deep Learning-Based Infrared and Visible Image Fusion:A Survey
EndPage 915
ExternalDocumentID jsjkxyts202404004
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1044-88aa468b4b65a2c4fb7d1a2e6a78a5b6f2744b3246290f367a794f10cee495963
ISSN 1673-9418
IngestDate Thu May 29 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
红外可见光图像
infrared and visible images
image fusion
图像融合
深度学习
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-88aa468b4b65a2c4fb7d1a2e6a78a5b6f2744b3246290f367a794f10cee495963
PageCount 17
ParticipantIDs wanfang_journals_jsjkxyts202404004
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2024
Publisher 大连大学 先进设计与智能计算教育部重点实验室,辽宁 大连 116622%北京科技大学 计算机与通信工程学院,北京 100083
Publisher_xml – name: 大连大学 先进设计与智能计算教育部重点实验室,辽宁 大连 116622%北京科技大学 计算机与通信工程学院,北京 100083
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.4037557
Snippet TP391;...
SourceID wanfang
SourceType Aggregation Database
StartPage 899
Title 基于深度学习的红外可见光图像融合综述
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202404004
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1XryIouI3RZzTsjUzmczHMdnNUgQ9tdBbSXazSoUK7ha0B0FU0IPWkwcFlSL1JOpJXEX_mcb2z_C9l2ySulWqsITJe7_MvK_NvJed2TjOxVj1ulJ3e03IxU1TKhe-Uj2TNtOutWmPS55I3Ch85aqaW5CXF_3FqemN2qql1WEy213bc1_J_3gVaOBX3CX7D54tOwUCtMG_cAQPw3FfPmaRz2yHhQGLJB5NxCLFQs1CjiygBAobQZsagLEscFmkmQWwxAZiBGEkswQ2HRZ0WGRYoCHNJAp8LI0VsjAiiocwwNiImTaxXGYMdQiYFrJCEMyt577UZ8QCjjBoWI3S2hbJr3E4y3dLawqN4IhCQucSGuMYQQJwTEgQzgKQ0aKA1lYQGKBNvYCIhtSQKJ_tVBBLemnitFnoVRwfJQoMCeWxICTVsbv6sxJRX2KD0V1YE_TJrWCjGqVQrzG2qxmDwsI8aODSTjUbWEt2Mmh7EHNvW_oIQ4xgoUDNAIzyQ0OTozSxyJl4VYSsAGKhVVBASpF7L6JRiGh4Y1KnBudKCcGET6q0SASKwqBVcyd4JsDVNHtZ4C_hUCpuaSlOTukQ2EdfBT5dZcj7ZchYVB8iRbQmZWpwKgRqk7DSXtPKYl6emKWrR1B5vlYEVZ692Xxz8O-Jgae1ocQAB5gtB8BtEFDB8yoZKpeoLg-Wb9y-MxxgGNFEd8A5KDTk57g8-G5UpbjAtPUSHc_lrr3iUBOUcx6-r0H5VckAp55xVVlS-NzT-FNoeS6l4Drf0TuWOl-QiCpd-pNCtAVxpR-vXKtly_NHnMNFmTsT5Peso87U2vVjjspej7ZGT39-_pSNNrP3m1tf3my_eLA92sjePs_WP-y8u5c9fJy9_J7dX9959SR79mj767edHx-POwudaL411yze29IccFfKpjFxLJVJZKL8WHRlP9E9HotUxdrEfqL6-K-kCVRySli37ykdQ1LQ5y7k69L6kBGccKZXbq6kJ50ZN0m0dFNPuN1YenEMV_VT8ILfc3UvjfUp50Kh51JxXx4sTXju9H5AZ5xD1R3jrDM9vLWanoN6Y5icJ4f_AslR0iU
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%BA%A2%E5%A4%96%E5%8F%AF%E8%A7%81%E5%85%89%E5%9B%BE%E5%83%8F%E8%9E%8D%E5%90%88%E7%BB%BC%E8%BF%B0&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E7%8E%8B%E6%81%A9%E9%BE%99&rft.au=%E6%9D%8E%E5%98%89%E4%BC%9F&rft.au=%E9%9B%B7%E4%BD%B3&rft.au=%E5%91%A8%E5%A3%AB%E5%8D%8E&rft.date=2024-04-01&rft.pub=%E5%A4%A7%E8%BF%9E%E5%A4%A7%E5%AD%A6+%E5%85%88%E8%BF%9B%E8%AE%BE%E8%AE%A1%E4%B8%8E%E6%99%BA%E8%83%BD%E8%AE%A1%E7%AE%97%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E8%BE%BD%E5%AE%81+%E5%A4%A7%E8%BF%9E+116622%25%E5%8C%97%E4%BA%AC%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E9%80%9A%E4%BF%A1%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100083&rft.issn=1673-9418&rft.volume=18&rft.issue=4&rft.spage=899&rft.epage=915&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2306061&rft.externalDocID=jsjkxyts202404004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg