自监督混合图神经网络的会话推荐模型

TP391; 基于会话的推荐旨在利用匿名会话预测用户行为.现有基于图神经网络(GNN)的会话推荐算法大多仅针对当前会话提取用户偏好,却忽略了来自其他会话的高阶多元关系从而影响推荐精度.此外,由于会话推荐所采用的短时交互序列包含的信息非常有限,使其更容易受到数据稀疏性的影响.针对上述问题,提出了自监督混合图神经网络会话推荐模型(SHGN).该模型首先通过将原始数据构建为三个视图来描述会话与物品关系,然后通过多头图注意力网络捕获会话内部物品的低阶转换信息,提出了残差图卷积网络捕获物品和会话的高阶转换信息;最后融合自监督学习(SSL)作为辅助任务,通过最大化不同通道学习到的会话嵌入的互信息,对原始数...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 4; pp. 1021 - 1031
Main Authors 章淯淞, 夏鸿斌, 刘渊
Format Journal Article
LanguageChinese
Published 江苏省媒体设计与软件技术重点实验室,江苏 无锡 214122 01.04.2024
江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 人工智能与计算机学院,江苏 无锡 214122
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2212043

Cover

Abstract TP391; 基于会话的推荐旨在利用匿名会话预测用户行为.现有基于图神经网络(GNN)的会话推荐算法大多仅针对当前会话提取用户偏好,却忽略了来自其他会话的高阶多元关系从而影响推荐精度.此外,由于会话推荐所采用的短时交互序列包含的信息非常有限,使其更容易受到数据稀疏性的影响.针对上述问题,提出了自监督混合图神经网络会话推荐模型(SHGN).该模型首先通过将原始数据构建为三个视图来描述会话与物品关系,然后通过多头图注意力网络捕获会话内部物品的低阶转换信息,提出了残差图卷积网络捕获物品和会话的高阶转换信息;最后融合自监督学习(SSL)作为辅助任务,通过最大化不同通道学习到的会话嵌入的互信息,对原始数据进行数据增强从而提升推荐性能.为了验证该方法的有效性,在Tmall、Diginetica、Now-playing、Yoochoose四个基准数据集上与SR-GNN、GCE-GNN、DHCN等主流基线模型进行了对比实验,实验结果在P@20、MRR@20等性能指标上均取得了一定提升.
AbstractList TP391; 基于会话的推荐旨在利用匿名会话预测用户行为.现有基于图神经网络(GNN)的会话推荐算法大多仅针对当前会话提取用户偏好,却忽略了来自其他会话的高阶多元关系从而影响推荐精度.此外,由于会话推荐所采用的短时交互序列包含的信息非常有限,使其更容易受到数据稀疏性的影响.针对上述问题,提出了自监督混合图神经网络会话推荐模型(SHGN).该模型首先通过将原始数据构建为三个视图来描述会话与物品关系,然后通过多头图注意力网络捕获会话内部物品的低阶转换信息,提出了残差图卷积网络捕获物品和会话的高阶转换信息;最后融合自监督学习(SSL)作为辅助任务,通过最大化不同通道学习到的会话嵌入的互信息,对原始数据进行数据增强从而提升推荐性能.为了验证该方法的有效性,在Tmall、Diginetica、Now-playing、Yoochoose四个基准数据集上与SR-GNN、GCE-GNN、DHCN等主流基线模型进行了对比实验,实验结果在P@20、MRR@20等性能指标上均取得了一定提升.
Abstract_FL Session-based recommendation aims to predict user actions based on anonymous sessions.Most of the ex-isting session recommendation algorithms based on graph neural network(GNN)only extract user preferences for the current session,but ignore the high-order multivariate relationships from other sessions,which affects the recom-mendation accuracy.Moreover,session-based recommendation suffers more from the problem of data sparsity due to the very limited short-term interactions.To solve the above problems,this paper proposes a model named self-supervised hybrid graph neural network(SHGN)for session-based recommendation.Firstly,the model describes the relationship between sessions and objects by constructing the original data into three views.Next,a graph attention network is used to capture the low-order transitions information of items within a session,and then a residual graph convolutional network is proposed to mine the high-order transitions information of items and sessions.Finally,self-supervised learning(SSL)is integrated as an auxiliary task.By maximizing the mutual information of session em-beddings learnt from different views,data augmentation is performed to improve the recommendation performance.In order to verify the effectiveness of the proposed method,comparative experiments with mainstream baseline models such as SR-GNN,GCE-GNN and DHCN are carried out on four benchmark datasets of Tmall,Diginetica,Nowplay-ing and Yoochoose,and the results are improved in P@20,MRR@20 and other performance indices.
Author 章淯淞
刘渊
夏鸿斌
AuthorAffiliation 江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 人工智能与计算机学院,江苏 无锡 214122;江苏省媒体设计与软件技术重点实验室,江苏 无锡 214122
AuthorAffiliation_xml – name: 江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 人工智能与计算机学院,江苏 无锡 214122;江苏省媒体设计与软件技术重点实验室,江苏 无锡 214122
Author_FL LIU Yuan
XIA Hongbin
ZHANG Yusong
Author_FL_xml – sequence: 1
  fullname: ZHANG Yusong
– sequence: 2
  fullname: XIA Hongbin
– sequence: 3
  fullname: LIU Yuan
Author_xml – sequence: 1
  fullname: 章淯淞
– sequence: 2
  fullname: 夏鸿斌
– sequence: 3
  fullname: 刘渊
BookMark eNo9jT1LAzEchzNUsNZ-B1eHO_PyT5OMUnyDQhedS85LpKekYBR1FxREbdfWFkSE4uLYoeqn8S73MSwoTr-HZ3h-K6jies4gtEZwzISQG1nc9d7FpCFYpIDImFJCMbAKqv67ZVT3vptgDkCJaMgqYuXNWxgNwvilmM3y_m0--gqvkzB_DJ-DMH8Kw-vvj2H5Pi4epuV9v5g-55O7VbRk9Yk39b-toYPtrf3mbtRq7-w1N1uRJxgg4lqaVFAljSRKcKsYcCmJkSlwLQ5BqKRBQZkkoZpCarlKF2CIFamwIAyrofXf7oV2VrujTtY7P3WLx07ms-PLqzNPMQUMmAD7AT-yXWQ
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2212043
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation
EndPage 1031
ExternalDocumentID jsjkxyts202404014
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1044-5a8ed7298e81975f9345881e8d45a7c479b6249ebb2a24df59d2a2e1f7d7f47e3
ISSN 1673-9418
IngestDate Thu May 29 04:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 自监督学习
图神经网络
多视图建模
会话推荐
session-based recommendation
self-supervised learning
graph neural network
multi-view modeling
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1044-5a8ed7298e81975f9345881e8d45a7c479b6249ebb2a24df59d2a2e1f7d7f47e3
PageCount 11
ParticipantIDs wanfang_journals_jsjkxyts202404014
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2024
Publisher 江苏省媒体设计与软件技术重点实验室,江苏 无锡 214122
江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 人工智能与计算机学院,江苏 无锡 214122
Publisher_xml – name: 江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 人工智能与计算机学院,江苏 无锡 214122
– name: 江苏省媒体设计与软件技术重点实验室,江苏 无锡 214122
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.3866735
Snippet TP391; 基于会话的推荐旨在利用匿名会话预测用户行为.现有基于图神经网络(GNN)的会话推荐算法大多仅针对当前会话提取用户偏好,却忽略了来自其他会话的高阶多元关系从而影...
SourceID wanfang
SourceType Aggregation Database
StartPage 1021
Title 自监督混合图神经网络的会话推荐模型
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202404014
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1673-9418
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib002423894
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNR68SKKit8UcU4lNZlMMvOOk22WItRTC72V7CZRKqzibkF78CQoiNpeW1uQIhQvHnuo-mts05_hey_pbrQVqrCEN5M37zOZeTM7L-M4dwMVBplfBG6RArjY4WkXct7kWHS9PC2UzmlpYPZBNDOv7i-EC2Nnthu7lpYHnanuyol5Jf_jVaxDv1KW7D94dkgUKxBG_-IVPYzXU_lYJEbgZN5akWgBsQCfgWlhA5FEItb0S0IBnjCGgVjECeFYhBmIY2HaDEzXzbEGWkzHCqNEokTcIhh52TYRR8omEdYw92kijjVYtD6zSISJmyEvN0z4riYANOEji5jFtpr5hsKi2BGzM0S_5iJZJIXA0aPBjWJhvVpFFKoCIBmhIDnFigGRixkFkGKriYI2AcONkaNtrn_I5rYZemIZyxfQZqWPbIZKmEp2K0Cy7GiPoNaYLD1UfaiWIRySWZGl44gVtbThpLKKZaHRq2haZGGkiIFZJOwxIF6mVdegkrJ1XLZJpqXZRiAAredPSl_5srHG60c6cEHVw9KxQWq0AvO0OjS4yjCvoxc6teOkkTHQ2vDISCymhiymJIYuXvWhrD--O77UX3r8_MWgTzbHnp4Oiz8rceik81FmXyajGA9vQnOOSmX1W7I0BsXDTp8OLIjCUcyMxcB40TCmDv1A03-Bw7JSOGuuUlqPpK525JFK9_6mEOfg9Yq097ARLs5dcM7X87wJW720F52xlUeXnODw9ZdyY63c3D7Y3d1ffbO_8aP8vFXufSi_r5V7H8v1Vz-_rR9-3Tx4v3P4bvVg59P-1tvLznw7mWvNuPWpJW7f95Ryw9TkGU5ZTY7Btg4LCCgZ3M9NpsJUd5WGTiQV5J2OTKXKihAyBHK_0JnmrvGKM9570suvOhNRlppuIDNIs1R5HQ2-9lSeQxgVslCQXXPu1Eou1r1Sf_GY266fBumGc270bt10xgfPlvNbGG0POrfZ278AYUeZwQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%87%AA%E7%9B%91%E7%9D%A3%E6%B7%B7%E5%90%88%E5%9B%BE%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E4%BC%9A%E8%AF%9D%E6%8E%A8%E8%8D%90%E6%A8%A1%E5%9E%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E7%AB%A0%E6%B7%AF%E6%B7%9E&rft.au=%E5%A4%8F%E9%B8%BF%E6%96%8C&rft.au=%E5%88%98%E6%B8%8A&rft.date=2024-04-01&rft.pub=%E6%B1%9F%E8%8B%8F%E7%9C%81%E5%AA%92%E4%BD%93%E8%AE%BE%E8%AE%A1%E4%B8%8E%E8%BD%AF%E4%BB%B6%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F+%E6%97%A0%E9%94%A1+214122&rft.issn=1673-9418&rft.volume=18&rft.issue=4&rft.spage=1021&rft.epage=1031&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2212043&rft.externalDocID=jsjkxyts202404014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg