Dynamic-YOLOX:复杂背景下的苹果叶片病害检测模型
TP181; 针对目前苹果叶片数据集的叶片病害种类不全以及图片背景单一等问题,构建了复杂背景下包括苹果叶部六种常见病害的苹果叶片病害数据集.针对目前主流苹果叶片病害检测模型检测精度不高、模型复杂和不满足实时监测等问题,提出了一种基于YOLOX-S(you only look once X-S)改进得到的复杂背景下的苹果叶片病害自适应检测模型Dynamic-YOLOX.设计并使用ECA-SPPFCSPC模块(efficient channel attention cross-stage partial fast spatial pyramid pooling module)更换YOLOX-S模型...
        Saved in:
      
    
          | Published in | 计算机科学与探索 Vol. 18; no. 8; pp. 2118 - 2129 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            江苏科技大学 计算机学院,江苏 镇江 212100
    
        01.08.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1673-9418 | 
| DOI | 10.3778/j.issn.1673-9418.2307022 | 
Cover
| Summary: | TP181; 针对目前苹果叶片数据集的叶片病害种类不全以及图片背景单一等问题,构建了复杂背景下包括苹果叶部六种常见病害的苹果叶片病害数据集.针对目前主流苹果叶片病害检测模型检测精度不高、模型复杂和不满足实时监测等问题,提出了一种基于YOLOX-S(you only look once X-S)改进得到的复杂背景下的苹果叶片病害自适应检测模型Dynamic-YOLOX.设计并使用ECA-SPPFCSPC模块(efficient channel attention cross-stage partial fast spatial pyramid pooling module)更换YOLOX-S模型主干网络尾部Dark5中的空间金字塔池化(SPP)以及跨阶段局部网络(CSPNet)模块来增强模型关注深层语义特征、抑制无用信息的能力,并减少硬件内存开销.设计了动态跨阶段局部网络(ODCSP)模块,并用其更换YOLOX-S模型主干网络中Dark2、Dark3、Dark4部分以及颈部网络中所有的CSPNet模块,使得模型在面对不同输入特征时有更强的自适应性,在减少模型的参数量和计算量的同时提高了模型的平均检测精度.引入Varifocal Loss更换模型中分类置信度损失的BCEWithLogits Loss来提升模型对苹果叶片中密集小目标病害的检测精度.在自制数据集上Dynamic-YOLOX相对原始YOLOX-S模型的mAP提升了4.54个百分点,达到84.63%,同时模型的参数量和计算量分别下降了11.97%和13.45%,检测速度达到44.07 FPS.对比主流苹果叶片病害检测模型,Dynamic-YOLOX具有一定优越性. | 
|---|---|
| ISSN: | 1673-9418 | 
| DOI: | 10.3778/j.issn.1673-9418.2307022 |