基于改进H-AC算法的冷源系统节能优化控制策略

TU831.3; 中央空调冷源设备台数与运行参数的优化是一类离散与连续变量的协同优化问题,而经典强化学习算法难以优化此类问题.为此,该文提出了一种结合选项-评论者与演员-评论者框架的中央空调冷源系统节能优化控制策略.首先,采用分层演员-评论者(H-AC)算法分层优化设备台数与运行参数,且高层和底层模型共用Q网络评估状态价值,以解决多时间尺度下的优化难题;然后,在智能体架构、策略与网络更新方式等方面对H-AC算法进行改进,以加速智能体的收敛;最后,以夏热冬暖地区某科研办公建筑中央空调冷源系统为研究对象,基于冷源系统TRNSYS仿真平台进行实验.结果表明:在平均室内舒适时间占比分别增加14.08、...

Full description

Saved in:
Bibliographic Details
Published in华南理工大学学报(自然科学版) Vol. 53; no. 1; pp. 21 - 31
Main Authors 周璇, 莫浩华, 闫军威
Format Journal Article
LanguageChinese
Published 广州现代产业技术研究院,广东 广州 511458 2025
华南理工大学 机械与汽车工程学院,广东 广州 510640
人工智能与数字经济广东省实验室(广州),广东 广州 511442%华南理工大学 机械与汽车工程学院,广东 广州 510640
Subjects
Online AccessGet full text
ISSN1000-565X
DOI10.12141/j.issn.1000-565X.240105

Cover

Abstract TU831.3; 中央空调冷源设备台数与运行参数的优化是一类离散与连续变量的协同优化问题,而经典强化学习算法难以优化此类问题.为此,该文提出了一种结合选项-评论者与演员-评论者框架的中央空调冷源系统节能优化控制策略.首先,采用分层演员-评论者(H-AC)算法分层优化设备台数与运行参数,且高层和底层模型共用Q网络评估状态价值,以解决多时间尺度下的优化难题;然后,在智能体架构、策略与网络更新方式等方面对H-AC算法进行改进,以加速智能体的收敛;最后,以夏热冬暖地区某科研办公建筑中央空调冷源系统为研究对象,基于冷源系统TRNSYS仿真平台进行实验.结果表明:在平均室内舒适时间占比分别增加14.08、11.23、29.70、9.07个百分比的前提下,基于改进H-AC算法的系统能耗分别比其他4种常规深度强化学习算法减少了32.28%、28.55%、28.63%、11.53%;虽然基于改进H-AC算法的系统能耗比基于选项-评论者框架的算法增加了0.27%,但获得了更平稳的学习过程且平均室内舒适时间占比增加了4.8个百分点.该文算法可为各类建筑中央空调冷源系统节能优化提供有效的技术手段,助力建筑"双碳"目标的实现.
AbstractList TU831.3; 中央空调冷源设备台数与运行参数的优化是一类离散与连续变量的协同优化问题,而经典强化学习算法难以优化此类问题.为此,该文提出了一种结合选项-评论者与演员-评论者框架的中央空调冷源系统节能优化控制策略.首先,采用分层演员-评论者(H-AC)算法分层优化设备台数与运行参数,且高层和底层模型共用Q网络评估状态价值,以解决多时间尺度下的优化难题;然后,在智能体架构、策略与网络更新方式等方面对H-AC算法进行改进,以加速智能体的收敛;最后,以夏热冬暖地区某科研办公建筑中央空调冷源系统为研究对象,基于冷源系统TRNSYS仿真平台进行实验.结果表明:在平均室内舒适时间占比分别增加14.08、11.23、29.70、9.07个百分比的前提下,基于改进H-AC算法的系统能耗分别比其他4种常规深度强化学习算法减少了32.28%、28.55%、28.63%、11.53%;虽然基于改进H-AC算法的系统能耗比基于选项-评论者框架的算法增加了0.27%,但获得了更平稳的学习过程且平均室内舒适时间占比增加了4.8个百分点.该文算法可为各类建筑中央空调冷源系统节能优化提供有效的技术手段,助力建筑"双碳"目标的实现.
Abstract_FL The optimization of the number of central air-conditioning cooling source units and their operating parameters is a collaborative optimization problem involving both discrete and continuous variables,which poses challenges for classical reinforcement learning algorithms.To address this problem,this paper proposed an energy-saving optimiza-tion control strategy for central air-conditioning cooling source systems based on a combination of the options-critic and actor-critic frameworks.Firstly,a hierarchical actor-critic(H-AC)algorithm was utilized to hierarchically opti-mize the number of units and operating parameters,with both the high-level and low-level models sharing a Q-network to evaluate state values,thereby addressing optimization challenges across multiple time scales.Secondly,the H-AC algorithm was improved in terms of agent architecture,policy,and network update mechanisms to accelerate the con-vergence of the agent.Finally,the proposed method was validated on the cooling source system of a research building located in a hot summer and warm winter region,using a TRNSYS simulation platform for experiments.The results demonstrate that,under conditions where the average indoor comfort time proportion is increased by 14.08,11.23,29.70 and 9.07 percentage points,respectively,the system energy consumption based on the improved H-AC algo-rithm is reduced by 32.28%,28.55%,28.64%,and 11.53%compared to four classical DRL algorithms.Although the system energy consumption of the improved H-AC algorithm is 0.27%higher than that of the options-critic frame-work,it achieves a more stable learning process and increases the average indoor comfort time proportion by 4.8%.This approach offers effective technical solutions for energy-saving optimization of central air-conditioning cold source systems in various building types,contributing to the achievement of buildings'dual-carbon goals.
Author 闫军威
周璇
莫浩华
AuthorAffiliation 华南理工大学 机械与汽车工程学院,广东 广州 510640;广州现代产业技术研究院,广东 广州 511458;人工智能与数字经济广东省实验室(广州),广东 广州 511442%华南理工大学 机械与汽车工程学院,广东 广州 510640
AuthorAffiliation_xml – name: 华南理工大学 机械与汽车工程学院,广东 广州 510640;广州现代产业技术研究院,广东 广州 511458;人工智能与数字经济广东省实验室(广州),广东 广州 511442%华南理工大学 机械与汽车工程学院,广东 广州 510640
Author_FL YAN Junwei
MO Haohua
ZHOU Xuan
Author_FL_xml – sequence: 1
  fullname: ZHOU Xuan
– sequence: 2
  fullname: MO Haohua
– sequence: 3
  fullname: YAN Junwei
Author_xml – sequence: 1
  fullname: 周璇
– sequence: 2
  fullname: 莫浩华
– sequence: 3
  fullname: 闫军威
BookMark eNo9jzFLAzEYhjNUsNb-B1eHO78kl-Q6OJRDrVBw0MGtpJdcbSkpeIidVURESgdbRYdO4qRLQfGq-Gd6l_sZFhSnF57heXhXUMH0jEZoDYOLCfbwRsdtx7FxMQA4jLNDl3iAgRVQ8R8to3Ict5sAPhcVH0QRbaaTZJ4MstuP_Pux5lQD-3qXTUf24SK9fM-SoZ3O7GySX5_l51_zz_v0ZpwNntOrN_sytqOnVbQUyW6sy39bQvvbWwdBzanv7ewG1boTY_Cow7FS0icsFEKEFU6JEkpLzhXlFGtBfJ9p7VEGIfUgiighmKlQUi4AC6AltP5rPZUmkqbV6PROjs2i1zgy3Zbq95sECFt8BUp_AITvYX0
ClassificationCodes TU831.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12141/j.issn.1000-565X.240105
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Investigating an Enhanced H-AC Algorithm-Based Strategy for Energy-Saving Optimization Control in Cold Source System
EndPage 31
ExternalDocumentID hnlgdxxb202501003
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
PSX
TCJ
ID FETCH-LOGICAL-s1043-61dda825c777c9632d7dea66d3631e72885ee4350c340ff32215dca36701703
ISSN 1000-565X
IngestDate Thu May 29 04:15:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords TRNSYS仿真平台
cold source system
选项-评论者框架
深度分层强化学习
TRNSYS simulation platform
option-critic framework
co-optimization
deep hierarchical reinforcement learning
冷源系统
协同优化
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1043-61dda825c777c9632d7dea66d3631e72885ee4350c340ff32215dca36701703
PageCount 11
ParticipantIDs wanfang_journals_hnlgdxxb202501003
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 华南理工大学学报(自然科学版)
PublicationTitle_FL Journal of South China University of Technology(Natural Science Edition)
PublicationYear 2025
Publisher 广州现代产业技术研究院,广东 广州 511458
华南理工大学 机械与汽车工程学院,广东 广州 510640
人工智能与数字经济广东省实验室(广州),广东 广州 511442%华南理工大学 机械与汽车工程学院,广东 广州 510640
Publisher_xml – name: 广州现代产业技术研究院,广东 广州 511458
– name: 华南理工大学 机械与汽车工程学院,广东 广州 510640
– name: 人工智能与数字经济广东省实验室(广州),广东 广州 511442%华南理工大学 机械与汽车工程学院,广东 广州 510640
SSID ssib008679807
ssib036435713
ssib001129195
ssib051370482
ssib023167209
ssib006703757
ssib001166550
ssib000969305
ssj0000561675
ssib002039873
ssib008143609
ssib002263912
ssib020475101
Score 2.4436743
Snippet TU831.3; 中央空调冷源设备台数与运行参数的优化是一类离散与连续变量的协同优化问题,而经典强化学习算法难以优化此类问题.为此,该文提出了一种结合选项-评论者与演员-评...
SourceID wanfang
SourceType Aggregation Database
StartPage 21
Title 基于改进H-AC算法的冷源系统节能优化控制策略
URI https://d.wanfangdata.com.cn/periodical/hnlgdxxb202501003
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-565X
  databaseCode: ADMLS
  dateStart: 20190601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib001166550
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kWsH_hNEQeUkppJMl8HD5PdLEWsl1borWTz0R5kBdtC6VFFRKR4sFX00JN40kvBj63in-nu9mf43iTdjFSheglvZ968zyTvZXbmjeNcS2mhJGNtNwwT3w3zMHcT0c7cMElpW7I0KzKch5y5y6fvhbfn2fzIsa_WqqXVlfZUuv7HfSX_41VoA7_iLtl_8OyQKDQADP6FK3gYrkfyMYkZUS0SaRKHeJUxiTlRACsSSxK1iIqmXd0gsSA6JkpgdxQQxbBFwYAQSUhoLLs0UR52AU4UGSBCBkBLArJvAOhqGn4NoqQZDgDH4cBeC9MCvLlh2jRdAjlqZifCBq1pJDYAyiaQOwgDLSCPZgjosKIJpDS3AI4iIU4LJQGOKBuM0kgH9KoEAJrUGgVdyiCXo4azIMaSlGhppPBJHZ4NXVAsMgYCQmooeo2iUH5EMcZUBgBa5TExB5Mq5dZr8wAYFRU6qNRVxUa0mESeMW1EdFD5FLUHQKK7SqWlZ7zcILplVPTQ4wgoozTIooj24dmxuJQUGpOHGU9CLhwyOzhhFQBIwOft6FWWWv7tKT0IRVZSU0baQ-HSp2EZL5H-1JD-FKR51GN1ijBcuLnUub-Yra210WaAgmV2x3wBOd6oM6abM3dm7U9jZccSzOupsn9zzqx_1H0vUFLYqSXkzlbqzQWe1lynyhISfW6VnsPCkbKeyvC9UGC4Gf7Gig9-jR9AJs5EncoyGgjvoM5TeS4AhxHMLJaozFItBESj3fyLyczWv06RdBatLHXupHOi-ryc0OW7YtwZWV865YxXAXx54npVZf7GaedWb7u7193ov_q2__MdviQGn173dzYHb5_0nn7pd18OdnYHu9v7zx_tP_6x9_1N78VWf-ND79nnwcetweb7M85sK55rTLvVWSruMsUFNpxmWSJ9lgohUgi6fiayPOE8C3hAc-FLyfIcTOKlQegVBYR5yrI0wfKOFCx_1hntPOjk55yJIi9ynqs2hYEh7ruHKJ770isSoExpdt65WllgoXpTLi8cumsuHAXponMc4XK-85IzuvJwNb8MXwAr7SvVzfYLbm6-fA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BH-AC%E7%AE%97%E6%B3%95%E7%9A%84%E5%86%B7%E6%BA%90%E7%B3%BB%E7%BB%9F%E8%8A%82%E8%83%BD%E4%BC%98%E5%8C%96%E6%8E%A7%E5%88%B6%E7%AD%96%E7%95%A5&rft.jtitle=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%91%A8%E7%92%87&rft.au=%E8%8E%AB%E6%B5%A9%E5%8D%8E&rft.au=%E9%97%AB%E5%86%9B%E5%A8%81&rft.date=2025&rft.pub=%E5%B9%BF%E5%B7%9E%E7%8E%B0%E4%BB%A3%E4%BA%A7%E4%B8%9A%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+511458&rft.issn=1000-565X&rft.volume=53&rft.issue=1&rft.spage=21&rft.epage=31&rft_id=info:doi/10.12141%2Fj.issn.1000-565X.240105&rft.externalDocID=hnlgdxxb202501003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhnlgdxxb%2Fhnlgdxxb.jpg