基于3D卷积神经网络的膏体屈服应力预测

TD853; 膏体流变性能是膏体充填技术重要指标,是金属矿膏体充填工艺流程的重要工程参数.本文提出一种基于 3D卷积神经网络的膏体屈服应力预测方法,通过制定图像采集标准并研发图像采集装置采集图像数据集.经Sobel算子实现膏体边缘检测、全图缩小等预处理,得到膏体图像数据集.采用十折交叉验证方法划分数据集,避免因单次随机划分造成的偶然误差.以膏体图像-屈服应力数据集为基础,利用 3D卷积神经网络模型提取膏体纹理特征和时序信息等,又通过引入直方图均衡化算法的图像增强策略减少环境因素干扰,提高模型稳健性.利用预处理后的数据集在 3D卷积神经网络模型上做训练和测试,得到模型损失值曲线图和混淆矩阵.将屈...

Full description

Saved in:
Bibliographic Details
Published in工程科学学报 Vol. 46; no. 8; pp. 1337 - 1348
Main Authors 刘泽民, 程海勇, 毛明发, 李在利, 吴顺川, 姜关照, 孙伟, 刘伟铧
Format Journal Article
LanguageChinese
Published 昆明理工大学国土资源工程学院,昆明 650093%云南驰宏锌锗股份有限公司会泽矿业公司,曲靖 654211%中铝集团玉溪矿业有限公司,玉溪 653100 01.07.2024
Subjects
Online AccessGet full text
ISSN2095-9389
DOI10.13374/j.issn2095-9389.2023.10.11.005

Cover

Abstract TD853; 膏体流变性能是膏体充填技术重要指标,是金属矿膏体充填工艺流程的重要工程参数.本文提出一种基于 3D卷积神经网络的膏体屈服应力预测方法,通过制定图像采集标准并研发图像采集装置采集图像数据集.经Sobel算子实现膏体边缘检测、全图缩小等预处理,得到膏体图像数据集.采用十折交叉验证方法划分数据集,避免因单次随机划分造成的偶然误差.以膏体图像-屈服应力数据集为基础,利用 3D卷积神经网络模型提取膏体纹理特征和时序信息等,又通过引入直方图均衡化算法的图像增强策略减少环境因素干扰,提高模型稳健性.利用预处理后的数据集在 3D卷积神经网络模型上做训练和测试,得到模型损失值曲线图和混淆矩阵.将屈服应力模型预测结果进行分析,又引入卷积注意力机制嵌入到卷积神经网络实现模型优化,并对模型参数进行调整,模型预测平均准确率从 93.26%提升至 98.19%,论证了基于 3D卷积神经网络的膏体屈服应力预测方法可行性.经图像增强处理的数据集应用到各模型中,模型预测平均准确率均提升 3%以上.相比传统膏体流变测量方式,解决了传统膏体屈服应力测量操作复杂、外部因素扰动大、工程现场难以开展等问题.
AbstractList TD853; 膏体流变性能是膏体充填技术重要指标,是金属矿膏体充填工艺流程的重要工程参数.本文提出一种基于 3D卷积神经网络的膏体屈服应力预测方法,通过制定图像采集标准并研发图像采集装置采集图像数据集.经Sobel算子实现膏体边缘检测、全图缩小等预处理,得到膏体图像数据集.采用十折交叉验证方法划分数据集,避免因单次随机划分造成的偶然误差.以膏体图像-屈服应力数据集为基础,利用 3D卷积神经网络模型提取膏体纹理特征和时序信息等,又通过引入直方图均衡化算法的图像增强策略减少环境因素干扰,提高模型稳健性.利用预处理后的数据集在 3D卷积神经网络模型上做训练和测试,得到模型损失值曲线图和混淆矩阵.将屈服应力模型预测结果进行分析,又引入卷积注意力机制嵌入到卷积神经网络实现模型优化,并对模型参数进行调整,模型预测平均准确率从 93.26%提升至 98.19%,论证了基于 3D卷积神经网络的膏体屈服应力预测方法可行性.经图像增强处理的数据集应用到各模型中,模型预测平均准确率均提升 3%以上.相比传统膏体流变测量方式,解决了传统膏体屈服应力测量操作复杂、外部因素扰动大、工程现场难以开展等问题.
Abstract_FL The rheological properties of paste are the foundation of the paste-filling process in metal mines,and paste yield stress is an important evaluation index for paste-filling technology.The change in ratio and concentration has a significant impact on the texture and appearance of paste slurry.Herein,a method for predicting the paste yield stress using three-dimensional convolutional neural networks(3D CNNs)is proposed through the development of image acquisition standards and an image acquisition device to collect image data sets based on a paste image data set.The Sobel operator is used to realize the pretreatment of paste edge detection and full size shrinking,and the paste image data set is obtained.The ten-fold cross-validation method is used to divide the data set to avoid accidental errors caused by a single random division.Based on the paste image-yield stress data set,the 3D CNNs model is used to extract the depth features and timing information on the paste.An image enhancement strategy for the histogram equalization algorithm is introduced to reduce the interference of environmental factors.The preprocessed data set is used for training and testing the 3D CNNs network model.In addition,the prediction accuracy of the yield stress model is analyzed:the convolutional attention block module is embedded into the CNN to optimize the model,and the introduction of channel attention and spatial attention enhances the ability of the model to perceive important areas in the image,which helps improve its ability to capture important information in the image and adjust the model parameters.The prediction accuracy of the model is increased from 93.26%to 98.19%,and the sample prediction error is within 20%,demonstrating the feasibility of paste yield stress prediction based on 3D CNNs.The image enhancement strategy using the histogram equalization algorithm can significantly improve the prediction accuracy of paste yield stress.The image enhancement strategy is applied to each model experiment,and the model prediction accuracy is improved by more than 3 percentage points.The developed image acquisition device and image acquisition standard can reduce the disturbance of environmental factors on image recognition and ensure the accuracy of paste yield stress prediction.Compared with the traditional paste rheological measurement method,the proposed method solves the problems of complex operation of traditional paste yield stress measurement,strong interference of external factors,and the difficulties associated with engineering sites.
Author 李在利
吴顺川
姜关照
程海勇
刘泽民
孙伟
刘伟铧
毛明发
AuthorAffiliation 昆明理工大学国土资源工程学院,昆明 650093%云南驰宏锌锗股份有限公司会泽矿业公司,曲靖 654211%中铝集团玉溪矿业有限公司,玉溪 653100
AuthorAffiliation_xml – name: 昆明理工大学国土资源工程学院,昆明 650093%云南驰宏锌锗股份有限公司会泽矿业公司,曲靖 654211%中铝集团玉溪矿业有限公司,玉溪 653100
Author_FL LI Zaili
LIU Weihua
WU Shunchuan
JIANG Guanzhao
CHENG Haiyong
LIU Zemin
SUN Wei
MAO Mingfa
Author_FL_xml – sequence: 1
  fullname: LIU Zemin
– sequence: 2
  fullname: CHENG Haiyong
– sequence: 3
  fullname: MAO Mingfa
– sequence: 4
  fullname: LI Zaili
– sequence: 5
  fullname: WU Shunchuan
– sequence: 6
  fullname: JIANG Guanzhao
– sequence: 7
  fullname: SUN Wei
– sequence: 8
  fullname: LIU Weihua
Author_xml – sequence: 1
  fullname: 刘泽民
– sequence: 2
  fullname: 程海勇
– sequence: 3
  fullname: 毛明发
– sequence: 4
  fullname: 李在利
– sequence: 5
  fullname: 吴顺川
– sequence: 6
  fullname: 姜关照
– sequence: 7
  fullname: 孙伟
– sequence: 8
  fullname: 刘伟铧
BookMark eNo9j89Kw0AYxPdQwVr7HOIh8dv9spvsUepfKHjRc8lmE2mULbiIfYAiotQietKiIIhH8SBCSt-m6epb2KJ4moHfMMMskYrpmJSQFQo-RQyDtdxvW2sYSO5JjKTPgKE_p9QH4BVS_UeLpG5tWwGnGFLJoEp4-VRMimvcKPuf7vXNvTy60cCNb9xo6O57X-eDyfi2fL-YDvtlcVdePnw_96YfV8tkIYuPbVr_0xo52Nrcb-x4zb3t3cZ607MUAuplIuUoYhaxUCYq0VEyNzFVjGlFFcRIeZai0lSkMmQQKdQcZ0EutGAiwBpZ_e09i00Wm8NW3jk9MbPFlsqPct3tqtnXACIAij9j8V86
ClassificationCodes TD853
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13374/j.issn2095-9389.2023.10.11.005
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Prediction of paste yield stress based on three-dimensional convolutional neural networks
EndPage 1348
ExternalDocumentID bjkjdxxb202408001
GrantInformation_xml – fundername: (国家自然科学基金); (云南省重大科技项目); (云南省基础研究计划项目)
  funderid: (国家自然科学基金); (云南省重大科技项目); (云南省基础研究计划项目)
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AAITT
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
FA0
GROUPED_DOAJ
JUIAU
PB1
PB6
PSX
Q--
Q-2
R-C
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-s1041-f6e536a28279cbcd8c279ca1b22db1b0a315fe3bd16e97208b3d53bcd56d62643
ISSN 2095-9389
IngestDate Thu May 29 04:07:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords paste backfill
膏体充填
rheology
3D convolutional neural networks
预测
yield stress
prediction
流变性能
屈服应力
3D卷积神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1041-f6e536a28279cbcd8c279ca1b22db1b0a315fe3bd16e97208b3d53bcd56d62643
PageCount 12
ParticipantIDs wanfang_journals_bjkjdxxb202408001
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle 工程科学学报
PublicationTitle_FL Chinese Journal of Engineering
PublicationYear 2024
Publisher 昆明理工大学国土资源工程学院,昆明 650093%云南驰宏锌锗股份有限公司会泽矿业公司,曲靖 654211%中铝集团玉溪矿业有限公司,玉溪 653100
Publisher_xml – name: 昆明理工大学国土资源工程学院,昆明 650093%云南驰宏锌锗股份有限公司会泽矿业公司,曲靖 654211%中铝集团玉溪矿业有限公司,玉溪 653100
SSID ssib051371920
ssib023167159
ssj0003313525
ssib022319478
ssib041261352
ssib036435564
Score 2.3961344
Snippet TD853; 膏体流变性能是膏体充填技术重要指标,是金属矿膏体充填工艺流程的重要工程参数.本文提出一种基于 3D卷积神经网络的膏体屈服应力预测方法,通过制定图像采集标准并研...
SourceID wanfang
SourceType Aggregation Database
StartPage 1337
Title 基于3D卷积神经网络的膏体屈服应力预测
URI https://d.wanfangdata.com.cn/periodical/bjkjdxxb202408001
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2095-9389
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0003313525
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdCgVxIsoKn5TxOCh7DpJJjPJcbI7SxH01EJvZbM7o1SoYFsoPRcRpRbRkxYFQTyKBxFa-m-6Xf0XvvcmOzuyRaqwDI_k5X2GyXuzyUsQ3HYFj12sZCNyOmxEKiwaxpluQxQ914X4KA9DPJx8_0E8txDdW1SLU9OHtV1L62uu2ds89lzJ_3gV2sCveEr2HzxbEYUGgMG_8AQPw_NEPmaZYqbDbMqyCJ86k21s021mE5YlLIVfhwBAzBCwlmlqsW1muG8xLQQMEIhYppmOCSciHIkELWdasyxGTE0sgJuJiBcAlmWGpYKGx8xCo60HvYRPMqAkQN962VAAxdI2S-MaECPNVI2mAjHRzBB_K1EoBEJm-BilokvsUXkUgo1XWewBUxhCAVo6I5TOH1Sgp-17QFGgWLJOTf3biIiqfbTlbB5RjGukQbeQWirNQb0Ida4rDNLYtucGfgTTo-1KI6ZI4RjDVcMNM2R00ZoUYBYiYirgpfzMKC0NrjMJ-cqgAZFWRq426Ezd8gDiABXBUk7Drbc5Ot94xqVwGii0vCGtJuQWzqOxpxKaoOVs0tQ1McorAFwEEQch41m84QxXWeVHgtLYJ7EbAeutCwDYANiA1VE4slyaHsf4BAqI1iQpEAX_nhqvmCLEi0dleSfVaHn3X7jL15iurdVcluWGfNzHZVnydSKmALSIggrkUbFownyTTYo5mmGoxuFUtcnVLT9e7m9sOEFlBEM8ZHpKQOwR1j78wKoH8Tk3taJ6AmtT1JIMCTmDqlV0iriAEFxVSYniMuGjK-cw_pQSu3HvdiXs6eDOSJO7f9eDzi6uFN2Vh7Uwe_5ccNbnxzNp-bI7H0xtProQqMHHvcO9V7I92P4x_PJ1-PnDcH9nePB6uL87fLf189nO4cGbwbfnR7vbg723gxfvf33aOvr-8mKw0MnmW3MNf99LY5WDWo0izpWMu0KLxPQcFi1BoMudEH3HXdiVXBW5dH0e5yYRoXayryQgqrgfQ2InLwXTK09W8svBjOGQ-RR5kuTORd3cuD5kcloWicP6nGHvSnDLq7nk3-erSxP-unoSpGvBmfGb53owvfZ0Pb8Becqau0lu_g1f99nn
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E3D%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%86%8F%E4%BD%93%E5%B1%88%E6%9C%8D%E5%BA%94%E5%8A%9B%E9%A2%84%E6%B5%8B&rft.jtitle=%E5%B7%A5%E7%A8%8B%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E6%B3%BD%E6%B0%91&rft.au=%E7%A8%8B%E6%B5%B7%E5%8B%87&rft.au=%E6%AF%9B%E6%98%8E%E5%8F%91&rft.au=%E6%9D%8E%E5%9C%A8%E5%88%A9&rft.date=2024-07-01&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%9B%BD%E5%9C%9F%E8%B5%84%E6%BA%90%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%98%86%E6%98%8E+650093%25%E4%BA%91%E5%8D%97%E9%A9%B0%E5%AE%8F%E9%94%8C%E9%94%97%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E4%BC%9A%E6%B3%BD%E7%9F%BF%E4%B8%9A%E5%85%AC%E5%8F%B8%2C%E6%9B%B2%E9%9D%96+654211%25%E4%B8%AD%E9%93%9D%E9%9B%86%E5%9B%A2%E7%8E%89%E6%BA%AA%E7%9F%BF%E4%B8%9A%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E7%8E%89%E6%BA%AA+653100&rft.issn=2095-9389&rft.volume=46&rft.issue=8&rft.spage=1337&rft.epage=1348&rft_id=info:doi/10.13374%2Fj.issn2095-9389.2023.10.11.005&rft.externalDocID=bjkjdxxb202408001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb%2Fbjkjdxxb.jpg