融合注意力的异构信息网络嵌入学习综述

TP18; 近年来,图嵌入学习已成为信息网络分析领域最常用的技术之一,其将网络对象嵌入到低维稠密向量空间的同时保留网络结构和内容特征并应用于下游分析任务.然而大多数现实网络是由多种对象类型、对象间的关系以及对象内容特征所组成的异构信息网络(HIN).因此为了学习更有效的嵌入表达,研究者开始将注意力机制融入到异构信息网络嵌入学习中,用以区分不同层面的异构性对嵌入表达的影响程度.对现有融合注意力的异构信息网络嵌入模型进行综述,全面回顾异构信息网络嵌入在过去五年的研究历程,总结其在解决网络异构性时所面临的内容异构性、结构异构性与语义异构性三大挑战,并概括出一种通用的注意力融合模型框架;针对上述挑战,...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 19; no. 1; pp. 1 - 29
Main Authors 屠佳琪, 张华, 常晓洁, 王佶, 袁书宏
Format Journal Article
LanguageChinese
Published 浙江大学 信息技术中心,杭州 310058 2025
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2404034

Cover

Abstract TP18; 近年来,图嵌入学习已成为信息网络分析领域最常用的技术之一,其将网络对象嵌入到低维稠密向量空间的同时保留网络结构和内容特征并应用于下游分析任务.然而大多数现实网络是由多种对象类型、对象间的关系以及对象内容特征所组成的异构信息网络(HIN).因此为了学习更有效的嵌入表达,研究者开始将注意力机制融入到异构信息网络嵌入学习中,用以区分不同层面的异构性对嵌入表达的影响程度.对现有融合注意力的异构信息网络嵌入模型进行综述,全面回顾异构信息网络嵌入在过去五年的研究历程,总结其在解决网络异构性时所面临的内容异构性、结构异构性与语义异构性三大挑战,并概括出一种通用的注意力融合模型框架;针对上述挑战,将现有注意力融合方式分为基于元路径、基于图神经网络以及面向应用场景三大类,并详细对比阐述了各类代表性模型;介绍常用的数据集、基准平台工具和评测指标;总结和探讨异构信息网络嵌入学习未来的研究方向.
AbstractList TP18; 近年来,图嵌入学习已成为信息网络分析领域最常用的技术之一,其将网络对象嵌入到低维稠密向量空间的同时保留网络结构和内容特征并应用于下游分析任务.然而大多数现实网络是由多种对象类型、对象间的关系以及对象内容特征所组成的异构信息网络(HIN).因此为了学习更有效的嵌入表达,研究者开始将注意力机制融入到异构信息网络嵌入学习中,用以区分不同层面的异构性对嵌入表达的影响程度.对现有融合注意力的异构信息网络嵌入模型进行综述,全面回顾异构信息网络嵌入在过去五年的研究历程,总结其在解决网络异构性时所面临的内容异构性、结构异构性与语义异构性三大挑战,并概括出一种通用的注意力融合模型框架;针对上述挑战,将现有注意力融合方式分为基于元路径、基于图神经网络以及面向应用场景三大类,并详细对比阐述了各类代表性模型;介绍常用的数据集、基准平台工具和评测指标;总结和探讨异构信息网络嵌入学习未来的研究方向.
Abstract_FL In recent years,graph embedding learning has become one of the most commonly used techniques in the field of information network analysis,which embeds network objects into low-dimensional dense vector spaces while preserving network structure and content characteristics.Then the learning embeddings are applied to downstream analysis tasks.However,most real-world networks are heterogeneous information networks(HIN),which are composed of multiple object types,relationships between objects and content characteristics.Therefore,in order to learn more effective embedding,researchers integrate attention mechanisms into the embedding learning of HIN to distinguish the degree of influence of different levels of heterogeneity on embedding.Therefore,this paper reviews the existing attention-integrated HIN embed-ding learning models.Firstly,it comprehensively reviews the research process of HIN embedding in the past five years,summarizes the three challenges it faces in solving network heterogeneity:content heterogeneity,structure heterogeneity and semantic heterogeneity,and summarizes a general framework of attention-integrated model.Secondly,in view of the above challenges,the existing attention-integrated models are divided into three categories:meta-path-based,graph neural net-work based and scenario-oriented,and various representative models are compared in detail.Then the common datasets,benchmark platform tools and evaluation indicators are introduced.Finally,the future research direction of HIN embed-ding learning is discussed.
Author 袁书宏
常晓洁
屠佳琪
张华
王佶
AuthorAffiliation 浙江大学 信息技术中心,杭州 310058
AuthorAffiliation_xml – name: 浙江大学 信息技术中心,杭州 310058
Author_FL TU Jiaqi
WANG Ji
ZHANG Hua
CHANG Xiaojie
YUAN Shuhong
Author_FL_xml – sequence: 1
  fullname: TU Jiaqi
– sequence: 2
  fullname: ZHANG Hua
– sequence: 3
  fullname: CHANG Xiaojie
– sequence: 4
  fullname: WANG Ji
– sequence: 5
  fullname: YUAN Shuhong
Author_xml – sequence: 1
  fullname: 屠佳琪
– sequence: 2
  fullname: 张华
– sequence: 3
  fullname: 常晓洁
– sequence: 4
  fullname: 王佶
– sequence: 5
  fullname: 袁书宏
BookMark eNo9js1Kw0AUhWdRwVr7Dm5dJM6duckkSyn-QaEbXZdJk5FGmYKjqEslgoiibqsUXShuREFcSCt9mU7SxzCguDpw-DjfmSMV3dMJIQtAXS5EsJS6XWO0C77gTogQuAwpUo4VUv3vZkndmG5EPUQGwg-qxJ8OruzNef7xkmfX9uKu6Gd2dJoPssn4MT95K75vi-G9_by0Z0_29Xny9VAMR9Px-zyZUXLXJPW_rJGt1ZXNxrrTbK1tNJabjgGK4CQdFUpELiHiIggBPYhUx0MFfgwhL_9JSYUvmeQxA1mCDLliYRQHID2V8BpZ_N09lFpJvd1Oewd7ujS2U5PuHB3vG0aZR4FS4D8RTV9s
ClassificationCodes TP18
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2404034
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Heterogeneous Information Network Embedding Learning Based on Attention:a Survey
EndPage 29
ExternalDocumentID jsjkxyts202501001
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1041-ecf9a443a1b37891451bfc54f16d193040aa076a2a3d21a43a243f29bd81a5fe3
ISSN 1673-9418
IngestDate Thu May 29 04:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 注意力机制
图神经网络
heterogeneous information network
异构信息网络
attention mechanism
图嵌入学习
元路径
graph neu-ral network
meta-path
graph embedding learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1041-ecf9a443a1b37891451bfc54f16d193040aa076a2a3d21a43a243f29bd81a5fe3
PageCount 29
ParticipantIDs wanfang_journals_jsjkxyts202501001
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2025
Publisher 浙江大学 信息技术中心,杭州 310058
Publisher_xml – name: 浙江大学 信息技术中心,杭州 310058
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.4100692
SecondaryResourceType review_article
Snippet TP18; 近年来,图嵌入学习已成为信息网络分析领域最常用的技术之一,其将网络对象嵌入到低维稠密向量空间的同时保留网络结构和内容特征并应用于下游分析任务.然而大多数现实...
SourceID wanfang
SourceType Aggregation Database
StartPage 1
Title 融合注意力的异构信息网络嵌入学习综述
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202501001
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1673-9418
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib002423894
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMNT64osoKn5TxH0qqdnsZj8eN3c5iqBPLfStbC6JUuEE7wraB0GpIKKorypFHxRfREF8kFb6Z3p3_RnObHLXnK1QhRAms7OzMztJZnaT2fW8q0KFbRu0c7-wQvvgoZhvIfL1tSjaMMZNuXKJtDduivlFfn0pWpo6slL7a2m1l8611w7MK_kfqwIO7IpZsv9g2TFTQAAM9oUzWBjOh7IxSRTRCVFNkkREB0QpkggSM2IcoCBObGGRMkTHJJFEG0QCJm4QFSINVgcMJ3GLGOpqUWJaSBw3iaYOiIluuFrAygEqIiZCwDSJEa66JiaoiIE5CAYM46Ae-yLSJK4ViYCWToAGiY3DSNdcnaciKnEiQa3QMecAjO4RJxF1zXIUFvRGFQNizARJw5FE2E0qmShReKAMmmjmug4j6z0SiS2reMRf1KdIykRqdzu7mhFyQYAS7TrdcFRppM_sQX0s0DIqqLoBMU5p4-wJxIrBE-BKmyMkKJjM4ueSqO5PhGS-5pWLGTkcve_BKr0HrYUh5TzQnw6OSamcg0Puc2PucxCX8aCaFZ5cPnylu3Ln_oNeF_slwAW3jnhHQwlRGf7m-jDZC9WAga4PNfGaT-Q8Q2w7fnfjvgMi2gt94ZKpQIxD44gyiZ_0xtecwyugzEwdSV3-WIcqXfubQi6VrlPYzq1a1LdwwjteDddmTPnsnfSm1m6f8sTuxov-q6eD758H6y_7z94O36z3tx4PNtZ3tj8MHn0d_no93HzX__G8_-Rj_8unnZ_vh5tbu9vfTnuLrWShMe9X-4_4XRpw6uftQlvOmaUpk0rjntZp0Y54QUUG4x4Q0NpAChtaloXUAmHIWRHqNFPURkXOznjTnbud_Kw3k6sszS0MnbjF_RqUyjJe6KzA1R1pEcpz3pVKz-Xq_dJd3me584chuuAdQ7icJbzoTffureaXIG7upZedwX8DJXeQNA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E6%B3%A8%E6%84%8F%E5%8A%9B%E7%9A%84%E5%BC%82%E6%9E%84%E4%BF%A1%E6%81%AF%E7%BD%91%E7%BB%9C%E5%B5%8C%E5%85%A5%E5%AD%A6%E4%B9%A0%E7%BB%BC%E8%BF%B0&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E5%B1%A0%E4%BD%B3%E7%90%AA&rft.au=%E5%BC%A0%E5%8D%8E&rft.au=%E5%B8%B8%E6%99%93%E6%B4%81&rft.au=%E7%8E%8B%E4%BD%B6&rft.date=2025&rft.pub=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E4%B8%AD%E5%BF%83%2C%E6%9D%AD%E5%B7%9E+310058&rft.issn=1673-9418&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=29&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2404034&rft.externalDocID=jsjkxyts202501001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg