基于LSTM-CAPF框架的岸桥起升减速箱轴承寿命预测方法

TH215; 岸桥起升减速箱轴承的健康状况对港口生产安全具有重要意义.针对岸桥变工况的工作条件,提出一种起升减速箱轴承的剩余使用寿命(RUL)预测框架.首先,对工作载荷进行离散化,并确定工况边界.然后,利用长短时记忆(LSTM)网络模型预测载荷和相应的运行工况.其次,以维纳过程为基础,建立了考虑不同工况下退化率和跳变系数的状态退化函数.最后,利用工况激活粒子滤波(CAPF)方法预测轴承退化状态和RUL.采用NetCMAS系统采集的上海某港口起升减速箱轴承全寿命数据验证了所提出的预测框架.与其他3种预测模式比较表明,所提出的框架能够在变工况条件下获得更准确的退化状态和RUL预测....

Full description

Saved in:
Bibliographic Details
Published in上海交通大学学报 Vol. 58; no. 3; pp. 352 - 360
Main Authors 孙志伟, 胡雄, 董凯, 孙德建, 刘洋
Format Journal Article
LanguageChinese
Published 上海海事大学物流工程学院,上海 201306%中国船舶集团有限公司第七一一研究所,上海 201108 01.03.2024
Subjects
Online AccessGet full text
ISSN1006-2467
DOI10.16183/j.cnki.jsjtu.2022.440

Cover

Abstract TH215; 岸桥起升减速箱轴承的健康状况对港口生产安全具有重要意义.针对岸桥变工况的工作条件,提出一种起升减速箱轴承的剩余使用寿命(RUL)预测框架.首先,对工作载荷进行离散化,并确定工况边界.然后,利用长短时记忆(LSTM)网络模型预测载荷和相应的运行工况.其次,以维纳过程为基础,建立了考虑不同工况下退化率和跳变系数的状态退化函数.最后,利用工况激活粒子滤波(CAPF)方法预测轴承退化状态和RUL.采用NetCMAS系统采集的上海某港口起升减速箱轴承全寿命数据验证了所提出的预测框架.与其他3种预测模式比较表明,所提出的框架能够在变工况条件下获得更准确的退化状态和RUL预测.
AbstractList TH215; 岸桥起升减速箱轴承的健康状况对港口生产安全具有重要意义.针对岸桥变工况的工作条件,提出一种起升减速箱轴承的剩余使用寿命(RUL)预测框架.首先,对工作载荷进行离散化,并确定工况边界.然后,利用长短时记忆(LSTM)网络模型预测载荷和相应的运行工况.其次,以维纳过程为基础,建立了考虑不同工况下退化率和跳变系数的状态退化函数.最后,利用工况激活粒子滤波(CAPF)方法预测轴承退化状态和RUL.采用NetCMAS系统采集的上海某港口起升减速箱轴承全寿命数据验证了所提出的预测框架.与其他3种预测模式比较表明,所提出的框架能够在变工况条件下获得更准确的退化状态和RUL预测.
Abstract_FL The health condition of hoisting gearbox bearings of quay cranes is of great importance for the safety of port production.A remaining useful life(RUL)predicting framework for lifting gearbox bearings of quay crane under time-varying operating conditions is proposed.First,the working load is discretized and the condition boundaries are determined.Then,the long short-term memory(LSTM)network model is adopted to predict the load and the corresponding operating conditions.Afterwards,considering the degradation rates and jump coefficients under different operating conditions,the state degradation function is established based on the Wiener process.Finally,the condition-activated particle filter(CAPF)is used to predict the degradation state and RUL of bearings.The proposed prediction framework is verified by the full-life data of the hoisting gearbox bearings in a port in Shanghai collected by the NetCMAS system.A comparison with the other three prediction methods shows that the proposed framework is able to obtain more accurate degradation states and RUL predictions under time-varying operating conditions.
Author 刘洋
孙志伟
胡雄
董凯
孙德建
AuthorAffiliation 上海海事大学物流工程学院,上海 201306%中国船舶集团有限公司第七一一研究所,上海 201108
AuthorAffiliation_xml – name: 上海海事大学物流工程学院,上海 201306%中国船舶集团有限公司第七一一研究所,上海 201108
Author_FL LIU Yang
DONG Kai
SUN Zhiwei
HU Xiong
SUN Dejian
Author_FL_xml – sequence: 1
  fullname: SUN Zhiwei
– sequence: 2
  fullname: HU Xiong
– sequence: 3
  fullname: DONG Kai
– sequence: 4
  fullname: SUN Dejian
– sequence: 5
  fullname: LIU Yang
Author_xml – sequence: 1
  fullname: 孙志伟
– sequence: 2
  fullname: 胡雄
– sequence: 3
  fullname: 董凯
– sequence: 4
  fullname: 孙德建
– sequence: 5
  fullname: 刘洋
BookMark eNotjz1Lw0AAhm-oYK39C-4OifeVSzKW0KoQUbDOJZfcaaOkYFrs6FAsRVQcdHCwVHBV_KgfhdI_413bf2FAp3d7nuddArmkkQgAVhA0EUMOWYvNMDmsm3EaN1smhhiblMIcyCMImYEpsxdBMU3rHFqIMNthMA_Kqj_6GV36u9UtwyvtVPTgTN9_TO866vVLDx5nw0910VXdq_lpf_r0Mhu_695EPU_U9Xj-0NHDc337rd9ulsGCDI5SUfzfAtirlKvehuFvr296Jd9IEaTIiFzblpy6wrY4QggTJhwntCLXsiLCJWNYhiIMqZOlcgYDV0gGJcGRFE7ASEQKYPWPexIkMkj2a3GjdZxkxlp6EDejdptnrykkECHyC6pbZ9E
ClassificationCodes TH215
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16183/j.cnki.jsjtu.2022.440
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL RUL Prediction Method for Quay Crane Hoisting Gearbox Bearing Based on LSTM-CAPF Framework
EndPage 360
ExternalDocumentID shjtdxxb202403011
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (62073213)
GroupedDBID -03
2B.
4A8
5XA
5XD
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1041-d977fb49e75b111236e88c5d955d3bf662fcecc48467b60a9ef60f32dfe8a63d3
ISSN 1006-2467
IngestDate Thu May 29 03:56:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords 工况激活粒子滤波
长短时记忆网络
time-varying operating conditions
quay crane bearing
condition-activated particle filter(CAPF)
岸桥轴承
long and short-term memory net-work(LSTM)
剩余寿命预测
时变工况
remaining useful life(RUL)prediction
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1041-d977fb49e75b111236e88c5d955d3bf662fcecc48467b60a9ef60f32dfe8a63d3
PageCount 9
ParticipantIDs wanfang_journals_shjtdxxb202403011
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 上海交通大学学报
PublicationTitle_FL Journal of Shanghai Jiaotong University
PublicationYear 2024
Publisher 上海海事大学物流工程学院,上海 201306%中国船舶集团有限公司第七一一研究所,上海 201108
Publisher_xml – name: 上海海事大学物流工程学院,上海 201306%中国船舶集团有限公司第七一一研究所,上海 201108
SSID ssib051367860
ssib002258139
ssib023167927
ssj0040338
ssib001128960
ssib057620143
Score 2.419877
Snippet TH215; 岸桥起升减速箱轴承的健康状况对港口生产安全具有重要意义.针对岸桥变工况的工作条件,提出一种起升减速箱轴承的剩余使用寿命(RUL)预测框架.首先,对工作载荷进行离...
SourceID wanfang
SourceType Aggregation Database
StartPage 352
Title 基于LSTM-CAPF框架的岸桥起升减速箱轴承寿命预测方法
URI https://d.wanfangdata.com.cn/periodical/shjtdxxb202403011
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1006-2467
  databaseCode: DOA
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0040338
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1006-2467
  databaseCode: ADMLS
  dateStart: 20220401
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620143
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdKj14kWsH_hNEQOK7LqTr0mOme0MRVQEW-itzOzMWFdYwd1C6clDsYioeNCDB0sFr4of9aNQ-mfcbfsvfMlkdkd3hepleE3eV95L85Js8uI4F-OIwbpBb73FXlyhGU4qksmoQmA5FFGSiSQ12T5v8ulZem2OzY2Nz5ZOLS124mpjeeS9kv_xKpSBX_Ut2X_wbJ8pFAAM_oUveBi--_IxChiSIfIVCqj-iuD67Zkblbq6FaKAI-UiwTUgA-QD4CEJOFRT-Rj5wuIohgKBfCj0dJWYQiIHPCSAjzSHIUJNroCPa5CnkE81uZDIDzWyCi0gXV0LVAobWVxzFr5RA2BpSgjK37wspsVGf4GEsvhaE9MiRQsFlJFCkTK6qSmkeAngmlaxovvYGilNW0Mkc351aMcABeQR3X4QIH0kaLkGWqGINYIKR7MNrMF8H9ndDrt7gung-Jjp76Oa93s7tYGGm-dp-ypZGNE10jzjMPiKgipHllovMDquD4u7gvVPxxxhZuuARvvKN74CVGE8kwO8sAi3OMBUe6-utcnFyJqxDciuGyA0vcnTf6q-eFIAtRIAOOBMagBpZJlOpE-g_kVvt1aOnHprCtP8bZUitDJRGkJIKU6SPG2xnXKR_EmJoWjOId6YcN5o3btbbbabncUqOBFXaZ7i649M6e2FZidZWoq1n81K_4BzEEOwr5V2WswqAeZkkpevfzNRSo6LdXIIifuzcqazGooBPtMsTVbMfMIHskh-49ZawCYi0NpfHam7uSDYyqLWndJcduaIc9guQidVPqJMOGPLC0edCRvm25OXbC76y8ecoLu2-XPzWX9Y6a0_6r35uvN6pfvpe2_93e7Gt-7T1e7q872HazvvP-5ufek93u5-2O6-2Np7u9LbeNJ79aP3-eVxZzYMZurTFfvySqXt1qhbSWBVmMVUph6LYTKECU-FaLBEMpaQOOMcZw0Y-6levMS8Fsk047WM4CRLRcRJQk444637rfSkMykkkHLuuTwilAoc8yR2KfNSHEkgE6ecC9YW83Zkbc8POfL0fpDOOIcG_-FnnfHOg8X0HKwYOvF54_9fkojK_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELSTM-CAPF%E6%A1%86%E6%9E%B6%E7%9A%84%E5%B2%B8%E6%A1%A5%E8%B5%B7%E5%8D%87%E5%87%8F%E9%80%9F%E7%AE%B1%E8%BD%B4%E6%89%BF%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E5%BF%97%E4%BC%9F&rft.au=%E8%83%A1%E9%9B%84&rft.au=%E8%91%A3%E5%87%AF&rft.au=%E5%AD%99%E5%BE%B7%E5%BB%BA&rft.date=2024-03-01&rft.pub=%E4%B8%8A%E6%B5%B7%E6%B5%B7%E4%BA%8B%E5%A4%A7%E5%AD%A6%E7%89%A9%E6%B5%81%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201306%25%E4%B8%AD%E5%9B%BD%E8%88%B9%E8%88%B6%E9%9B%86%E5%9B%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E7%AC%AC%E4%B8%83%E4%B8%80%E4%B8%80%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%B8%8A%E6%B5%B7+201108&rft.issn=1006-2467&rft.volume=58&rft.issue=3&rft.spage=352&rft.epage=360&rft_id=info:doi/10.16183%2Fj.cnki.jsjtu.2022.440&rft.externalDocID=shjtdxxb202403011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb%2Fshjtdxxb.jpg