数据与知识双驱动的备件需求模糊预测模型

N945.24; 针对知识驱动型需求预测模型所需的专家知识稀缺、数据驱动型需求预测模型可解释性不足的问题,提出了数据与知识双驱动的备件需求模糊预测模型.该模型基于模糊聚类算法将数值型数据聚类为结构简单、可解释性强的规则库,运用模糊逻辑将领域专家知识表示为Mamdani型规则库.在此基础上,引入了一种新型智能计算理论——模糊网络理论对两类规则库进行合并运算,形成初始预测模型.采用遗传算法优化模型规则库的模糊集参数来提高模型预测准确性.通过与模糊聚类算法进行对比,提出的模型在可解释性以及准确性指标上均具有优势....

Full description

Saved in:
Bibliographic Details
Published in国防科技大学学报 Vol. 46; no. 2; pp. 205 - 214
Main Authors 王小巍, 陈砚桥, 金家善, 魏曙寰
Format Journal Article
LanguageChinese
Published 陆军工程大学军械士官学校,湖北武汉 430075%海军工程大学动力工程学院,湖北武汉 430033 2024
海军工程大学动力工程学院,湖北武汉 430033
Subjects
Online AccessGet full text
ISSN1001-2486
DOI10.11887/j.cn.202402021

Cover

Abstract N945.24; 针对知识驱动型需求预测模型所需的专家知识稀缺、数据驱动型需求预测模型可解释性不足的问题,提出了数据与知识双驱动的备件需求模糊预测模型.该模型基于模糊聚类算法将数值型数据聚类为结构简单、可解释性强的规则库,运用模糊逻辑将领域专家知识表示为Mamdani型规则库.在此基础上,引入了一种新型智能计算理论——模糊网络理论对两类规则库进行合并运算,形成初始预测模型.采用遗传算法优化模型规则库的模糊集参数来提高模型预测准确性.通过与模糊聚类算法进行对比,提出的模型在可解释性以及准确性指标上均具有优势.
AbstractList N945.24; 针对知识驱动型需求预测模型所需的专家知识稀缺、数据驱动型需求预测模型可解释性不足的问题,提出了数据与知识双驱动的备件需求模糊预测模型.该模型基于模糊聚类算法将数值型数据聚类为结构简单、可解释性强的规则库,运用模糊逻辑将领域专家知识表示为Mamdani型规则库.在此基础上,引入了一种新型智能计算理论——模糊网络理论对两类规则库进行合并运算,形成初始预测模型.采用遗传算法优化模型规则库的模糊集参数来提高模型预测准确性.通过与模糊聚类算法进行对比,提出的模型在可解释性以及准确性指标上均具有优势.
Abstract_FL Aiming at the problem of scarcity of expert knowledge required by knowledge-driven demand forecasting model and insufficient interpretability of data-driven demand forecasting model,a fuzzy prediction model of spare parts demand driven by data and knowledge was proposed.Based on the fuzzy clustering algorithm,the numerical data was clustered into a rule base with simple structure and strong interpretability.The domain expert knowledge was represented as a Mamdani-type rule base by utilizing fuzzy logic.On this basis,a new type of intelligent computing theory—fuzzy network theory was introduced,the two types of rule bases were merged into an initial prediction model.A genetic algorithm was employed to optimize the fuzzy set parameters of the model's rule base to enhance the model's predictive accuracy.Compared with the fuzzy clustering algorithm,the proposed model has advantages in interpretability and accuracy.
Author 陈砚桥
金家善
王小巍
魏曙寰
AuthorAffiliation 海军工程大学动力工程学院,湖北武汉 430033;陆军工程大学军械士官学校,湖北武汉 430075%海军工程大学动力工程学院,湖北武汉 430033
AuthorAffiliation_xml – name: 海军工程大学动力工程学院,湖北武汉 430033;陆军工程大学军械士官学校,湖北武汉 430075%海军工程大学动力工程学院,湖北武汉 430033
Author_FL JIN Jiashan
WEI Shuhuan
WANG Xiaowei
CHEN Yanqiao
Author_FL_xml – sequence: 1
  fullname: WANG Xiaowei
– sequence: 2
  fullname: CHEN Yanqiao
– sequence: 3
  fullname: JIN Jiashan
– sequence: 4
  fullname: WEI Shuhuan
Author_xml – sequence: 1
  fullname: 王小巍
– sequence: 2
  fullname: 陈砚桥
– sequence: 3
  fullname: 金家善
– sequence: 4
  fullname: 魏曙寰
BookMark eNrjYmDJy89LZWAQNzTQMzS0sDDXz9JLztMzMjAyMQAShiwMnIYGBoa6RiYWZhwMvMXFmUkGRsaGZuaG5oacDJbPpm541rvuyY6-5_OXvljf9rS_5-XKjU-7Vjyf1fJ0SfuT3dtezml4trHp2YqFzzd3vVzU8mxrN5D9dF43DwNrWmJOcSovlOZmCHVzDXH20PXxd_d0dvTRLTY0MDHUtTA1STS3TDY2TTNOMkkxMks0SEq2tDC2ME1LM09JMjYGcpMMTIySjY1Tko3N0swNDM3TLMyNTY0TjU0sLBItjbkZNCHmlifmpSXmpcdn5ZcW5QFtjE9Py85KqahIgnvVGAATZV43
ClassificationCodes N945.24
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11887/j.cn.202402021
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
DocumentTitle_FL Spare parts demand fuzzy prediction model driven by data and knowledge
EndPage 214
ExternalDocumentID gfkjdxxb202402021
GrantInformation_xml – fundername: 国家部委基金资助项目
  funderid: (LJ20191A020110)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
PSX
TCJ
TGT
TN5
U1G
U5M
ID FETCH-LOGICAL-s1041-854a79c35f3b4d26a0bc98385ff7db330bcb042c33dc36f7017f87353a3488a93
ISSN 1001-2486
IngestDate Thu May 29 04:04:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords genetic algorithm
遗传算法
prediction model
备件
模糊网络
fuzzy network
预测模型
spare parts
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1041-854a79c35f3b4d26a0bc98385ff7db330bcb042c33dc36f7017f87353a3488a93
PageCount 10
ParticipantIDs wanfang_journals_gfkjdxxb202402021
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 国防科技大学学报
PublicationTitle_FL Journal of National University of Defense Technology
PublicationYear 2024
Publisher 陆军工程大学军械士官学校,湖北武汉 430075%海军工程大学动力工程学院,湖北武汉 430033
海军工程大学动力工程学院,湖北武汉 430033
Publisher_xml – name: 陆军工程大学军械士官学校,湖北武汉 430075%海军工程大学动力工程学院,湖北武汉 430033
– name: 海军工程大学动力工程学院,湖北武汉 430033
SSID ssib023167171
ssib057620141
ssib051370975
ssib001129263
ssj0000556656
Score 2.4021387
Snippet N945.24; 针对知识驱动型需求预测模型所需的专家知识稀缺、数据驱动型需求预测模型可解释性不足的问题,提出了数据与知识双驱动的备件需求模糊预测模型.该模型基于模糊聚类...
SourceID wanfang
SourceType Aggregation Database
StartPage 205
Title 数据与知识双驱动的备件需求模糊预测模型
URI https://d.wanfangdata.com.cn/periodical/gfkjdxxb202402021
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-2486
  databaseCode: ADMLS
  dateStart: 20181028
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620141
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNTtxYv4Sf1kEceLrCYzmczMSSa7WYrYXmyht5JkO60KK7RbqD2JFIXWj5MXEUVRqBe1iCL4d7pb-y98bzLdTa1C6yW8vH3zPkPem9mZF8-7RCMDaTePaiYI01qYpaKW-iHMWmGibVrchMJ2Yhobj0YnwxtTfGqocr20a2mxk13Nl_96ruR_ogo4iCuekj1AZPtMAQEwxBeuEGG47ivGJImI4iT2EZANohOShCSWRAIgiGoSzUkiiW4SGZGEEwlAnSSKaEXiwGI00dISayJDxGioLoXlE5M4QmJVx_0QIAKGSIoADNEBjooZckCG1A4HGuAZl2g4UQlgykWwRQLzhmUuSUyRlQYdAmuItuKsJoBEAEyLSoCl0XznYcHRMrFirTPASgQA2RiQgCRFpDVV-2gtqhjs4qLQcGV1Bk_GVqICWWGZBFRA_hFaAByRtglCy6sndLBuuiO38L4dVKiGgRHoo0LrvaY64gg9GxfuYETHTjnwWtkdYBHYQus2AAqVRg51ooT9dYcM46euhAwrOEK5C1csDq5c8dRY4J-jCmJrP9hwAOWKniUuVeJmPBq6RuYul7rl5NulJQ2XGH1eqrFocXB4b_qWuAIG-TvH1sT4x59fnJ__oyf6rLl7p7W0lPVpDnnDFBfkKt6wbozdvDWYEUA9Swcd5ig2fggGMyAeMOGrQQUNs2-KW5_7y7TYayqy34Du2-sahKGu13Zrag_-tU3ani3VqBNHvSNuclnVxZvimDe0PHfcGxmzjfjn71cvV8dTeP1UXT4_4aneiy-9p582fzzbevPh1-dH3edPtj9udFfXt16udN8_3vz5ffvVg97Gw976262vq9vvVnrf1gDuvl476U02k4n6aM19S6W2EOC7V_IwFSpn3LAsbNEo9bNcSSa5MaKVMQa3GeTvnLFWziIjIFEbKRhnKYMUnyp2yqu077VnRryqUBKK2MjkYZSFfsozA_fMV0YwlgWt9LR30Xlh2r0rF6b3BOzMfojOeocRLlY8z3mVzvzizHmYA3SyCy7OvwFbQbpu
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%95%B0%E6%8D%AE%E4%B8%8E%E7%9F%A5%E8%AF%86%E5%8F%8C%E9%A9%B1%E5%8A%A8%E7%9A%84%E5%A4%87%E4%BB%B6%E9%9C%80%E6%B1%82%E6%A8%A1%E7%B3%8A%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B&rft.jtitle=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%B0%8F%E5%B7%8D&rft.au=%E9%99%88%E7%A0%9A%E6%A1%A5&rft.au=%E9%87%91%E5%AE%B6%E5%96%84&rft.au=%E9%AD%8F%E6%9B%99%E5%AF%B0&rft.date=2024&rft.pub=%E9%99%86%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%86%9B%E6%A2%B0%E5%A3%AB%E5%AE%98%E5%AD%A6%E6%A0%A1%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430075%25%E6%B5%B7%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%8A%A8%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430033&rft.issn=1001-2486&rft.volume=46&rft.issue=2&rft.spage=205&rft.epage=214&rft_id=info:doi/10.11887%2Fj.cn.202402021&rft.externalDocID=gfkjdxxb202402021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgfkjdxxb%2Fgfkjdxxb.jpg