基于光度立体和双流特征融合网络的工业产品表面缺陷检测方法

TP391.41; 表面缺陷检测是现代工业生产流程中的重要环节.现有的视觉缺陷检测方法一般通过对目标对象的单幅RGB或灰度图像进行分析,利用缺陷与背景之间的差异性特征实现检测,适用于目标与背景呈较大区别的对象,如金属表面的氧化、斑点缺陷检测.但单纯的RGB图像无法有效地表征主要由深度变化形成的凹坑、凸包等3维缺陷特征,最终导致漏检.为此,文中根据多方向光照成像及光度立体原理提取待测对象表面的3维几何形貌信息;接着,利用对比度金字塔融合算法对原始的多方向光照图像进行有效融合,得到增强的缺陷的2维RGB融合图像特征;然后,在多目标检测框架YOLOv5的基础上,以上述几何形貌及RGB融合图像为输入,...

Full description

Saved in:
Bibliographic Details
Published in华南理工大学学报(自然科学版) Vol. 52; no. 10; pp. 112 - 123
Main Authors 胡广华, 涂千禧
Format Journal Article
LanguageChinese
Published 华南理工大学 机械与汽车工程学院,广东 广州 510640 01.10.2024
Subjects
Online AccessGet full text
ISSN1000-565X
DOI10.12141/j.issn.1000-565X.230638

Cover

Abstract TP391.41; 表面缺陷检测是现代工业生产流程中的重要环节.现有的视觉缺陷检测方法一般通过对目标对象的单幅RGB或灰度图像进行分析,利用缺陷与背景之间的差异性特征实现检测,适用于目标与背景呈较大区别的对象,如金属表面的氧化、斑点缺陷检测.但单纯的RGB图像无法有效地表征主要由深度变化形成的凹坑、凸包等3维缺陷特征,最终导致漏检.为此,文中根据多方向光照成像及光度立体原理提取待测对象表面的3维几何形貌信息;接着,利用对比度金字塔融合算法对原始的多方向光照图像进行有效融合,得到增强的缺陷的2维RGB融合图像特征;然后,在多目标检测框架YOLOv5的基础上,以上述几何形貌及RGB融合图像为输入,构建一种基于双流特征融合的缺陷检测网络模型,该模型引入了空间通道注意力残差模块和门控循环单元特征融合模块,能在多个层级对不同模态特征进行有机融合,实现对表面缺陷的2维RGB及3维形貌信息的有效提取,达到同时应对2维和3维缺陷检测的目的;最后对若干典型工业产品表面缺陷进行检测实验.结果表明,文中方法在多个数据集上的平均检测准确率均超过90%,且能同时应对2维、3维缺陷的检测,检测性能优于目前的主流方法,能够适应不同工业产品表面的检测需求.
AbstractList TP391.41; 表面缺陷检测是现代工业生产流程中的重要环节.现有的视觉缺陷检测方法一般通过对目标对象的单幅RGB或灰度图像进行分析,利用缺陷与背景之间的差异性特征实现检测,适用于目标与背景呈较大区别的对象,如金属表面的氧化、斑点缺陷检测.但单纯的RGB图像无法有效地表征主要由深度变化形成的凹坑、凸包等3维缺陷特征,最终导致漏检.为此,文中根据多方向光照成像及光度立体原理提取待测对象表面的3维几何形貌信息;接着,利用对比度金字塔融合算法对原始的多方向光照图像进行有效融合,得到增强的缺陷的2维RGB融合图像特征;然后,在多目标检测框架YOLOv5的基础上,以上述几何形貌及RGB融合图像为输入,构建一种基于双流特征融合的缺陷检测网络模型,该模型引入了空间通道注意力残差模块和门控循环单元特征融合模块,能在多个层级对不同模态特征进行有机融合,实现对表面缺陷的2维RGB及3维形貌信息的有效提取,达到同时应对2维和3维缺陷检测的目的;最后对若干典型工业产品表面缺陷进行检测实验.结果表明,文中方法在多个数据集上的平均检测准确率均超过90%,且能同时应对2维、3维缺陷的检测,检测性能优于目前的主流方法,能够适应不同工业产品表面的检测需求.
Abstract_FL Surface defect detection is an important part of the modern industrial production process.The existing visual defect detection methods generally achieve detection by analyzing a single RGB or grayscale image of the tar-get object and using differential features between the defect and the background.They are suitable for objects with a large difference between the target and the background,such as the detection of metal surface oxidation and spot defects.However,the simple RGB image cannot effectively characterize the 3D defect features such as dents and bulges,which are mainly formed by depth changes,ultimately resulting in missed detection.To this end,this paper extracted the 3D geometric appearance information of the object surface to be tested according to multi-directional light imaging and photometric stereo principle.Next,the original multi-directional light images were effectively fused using the contrast pyramid fusion algorithm to obtain the enhanced 2D RGB fusion image features of the defects.Then,on the basis of the multi-target detection framework YOLOv5,with the above geometric appearance and RGB fusion images as inputs,a defect detection network model based on dual stream feature fusion detection network model was constructed.The model introduces the spatial channel attention residual module and the gated recurrent unit(GRU)feature fusion module and is able to organically fuse the different modal features at multiple levels to realize the effective extraction of the 2D RGB and 3D appearance information of the surface defects,so as to achieve the purpose of dealing with the detection of 2D and 3D defects at the same time.Finally,the detection experiments were conducted on the surface defects of several typical industrial products.The results show that mAP of the method in the paper is above 90%on several datasets,and it can simultaneously cope with the detection of 2D and 3D defects,so the detection performance is better than that of the current mainstream methods,and it can meet the detection requirements of different industrial products.
Author 涂千禧
胡广华
AuthorAffiliation 华南理工大学 机械与汽车工程学院,广东 广州 510640
AuthorAffiliation_xml – name: 华南理工大学 机械与汽车工程学院,广东 广州 510640
Author_FL HU Guanghua
TU Qianxi
Author_FL_xml – sequence: 1
  fullname: HU Guanghua
– sequence: 2
  fullname: TU Qianxi
Author_xml – sequence: 1
  fullname: 胡广华
– sequence: 2
  fullname: 涂千禧
BookMark eNo9j8tKw0AARWdRwVr7D25dJM4rk2QpxRcU3FRwVyaZpLaUKRjELi0oWFqfRcHiAxUf4FJKbbR-TSZp_8KC4urCWZzDnQEpWZMeAHMI6ggjihYqejkIpI4ghJrBjE0dE8iIlQLpfzQNskFQdiC0mGlb0EyDgroLo_BYHTRV-Jy8taJhR5231Uk77jWS5kB9N0a3R-r0MBmeJZ_XSXdf9Z-ij24UvqhOY3T_Or55SL7C8VU_ftyLe634chC_X8yCKZ9XAy_7txmwsbxUyK1q-fWVtdxiXgsQpEgjpmC26VHBELcpMRhjWLiEGS4zBWcWZx7FnAgPeZghB7vCdwVyDEgsQbGwSQbM_3p3ufS5LBUrtZ1tOSkWt2S1JOp1B0NMJ-8RIj9OTXUU
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12141/j.issn.1000-565X.230638
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Surface Defect Detection Method for Industrial Products Based on Photometric Stereo and Dual Stream Feature Fusion Network
EndPage 123
ExternalDocumentID hnlgdxxb202410011
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
PSX
TCJ
ID FETCH-LOGICAL-s1041-37d697e4d61a94356662dc365c67da68a6e42a3de1e261b2cdfcd1b5038d42d93
ISSN 1000-565X
IngestDate Thu May 29 04:15:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords 光度立体
deep learning
defect detection
dual stream feature fusion
双流特征融合
深度学习
photometric stereo
缺陷检测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1041-37d697e4d61a94356662dc365c67da68a6e42a3de1e261b2cdfcd1b5038d42d93
PageCount 12
ParticipantIDs wanfang_journals_hnlgdxxb202410011
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 华南理工大学学报(自然科学版)
PublicationTitle_FL Journal of South China University of Technology(Natural Science Edition)
PublicationYear 2024
Publisher 华南理工大学 机械与汽车工程学院,广东 广州 510640
Publisher_xml – name: 华南理工大学 机械与汽车工程学院,广东 广州 510640
SSID ssib008679807
ssib036435713
ssib001129195
ssib051370482
ssib023167209
ssib006703757
ssib001166550
ssib000969305
ssj0000561675
ssib002039873
ssib008143609
ssib002263912
ssib020475101
Score 2.434439
Snippet TP391.41; 表面缺陷检测是现代工业生产流程中的重要环节.现有的视觉缺陷检测方法一般通过对目标对象的单幅RGB或灰度图像进行分析,利用缺陷与背景之间的差异性特征实现检...
SourceID wanfang
SourceType Aggregation Database
StartPage 112
Title 基于光度立体和双流特征融合网络的工业产品表面缺陷检测方法
URI https://d.wanfangdata.com.cn/periodical/hnlgdxxb202410011
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-565X
  databaseCode: ADMLS
  dateStart: 20190601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib001166550
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMNTriy9i_cD6RREXlHI12WQ3u4_JfVDE-mILfSu5S9I-yAm2hdInCwqW1s-iYPEDFT_ARym1p_XXXO7af-HMZi8XrUItHMvc3szsfCQ7s7ndiWFclGHdNiMrKsLFAAuUmPGilE5cFPWAySCKI8rwcPLYdT464VydZJN9hcHcrqX5udpIffGv50oO4lXoA7_iKdn_8GzGFDoABv9CCx6Gdl8-JhVGZJX4Hqk42IoK9gj4SASgx-Ok4hLPJ8JXOGUibUVFiSgp5KoCOPEBthAZaP2UvKJ6BJEAlBWVSYRAHOSjkH2fyBICEkZ3FBUMx9RYAjtTwTxXkduaoWcRD_hIIsvEo4pPSWkBPRI5gDyejZswtGA-ApIrwaC1SfrKzG5WrRQpd9UH2VwlEkjLcyIx4jlaEq-sLJMBnAhP4VRREtRREAFUnjIIqJCa0VVaZ1TKVoicUmWPVBS1jVri4KBQNROwh8KRqaDdX2w1AKjt5p_DUCfb0ZfeOQfTdFiZLzUxR4v7pvYQMgJJLPQoSO137aIZuegntH6ms_IQcKClnHKps0vDv-kLLGRlGCZjnlbK0qEPawxAej-Zj42M5ucAMxfpLL37PU2arPTQ-J54TC0nDcg4xEg2BB4_4GlVnz-qnc80bk6HCws1tDCWB7MOGf3U5ZwWjH6vPHbtRn7tLfPBChcOlsx_55zl_rKnpi2Fm89dITnP5fbcxddB93JxASsJnqtth5UpRe9ZCTUdF-NZ9h1LStAevg2pPnN7uTKzbNfsFpJKXzzAgYKp3RjaLHqnIRrtyj9Mps4WNuKgMZ1Lg8ePGkf0-nXISyejAaNvceaYMaAzhNmhS7qM_eXjxnjyptlqPkzuLSfNj50vK63tteTpavJotb2x1FneSn4u7bx-kDy-39l-0vn-srN-N9n80Pq23mp-StaWdt5-3n31rvOjuftis_3-Tntjpf18q_312QljoloZL40W9TtcirOW6ViQv4RcupETciuQYBEOroTwwFmdu2HARcAjhwZ2COGCcqtG62FcD60aFqkKHRpK-6RRaNxqRKeMochxQxbAcq9GbYfGZsBEHErGYsuJnUgEg8YFbZopPUfPTu25nE7vB-mMcbh3h581CnO356NzsPaYq53XV-EvQ6_juQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%89%E5%BA%A6%E7%AB%8B%E4%BD%93%E5%92%8C%E5%8F%8C%E6%B5%81%E7%89%B9%E5%BE%81%E8%9E%8D%E5%90%88%E7%BD%91%E7%BB%9C%E7%9A%84%E5%B7%A5%E4%B8%9A%E4%BA%A7%E5%93%81%E8%A1%A8%E9%9D%A2%E7%BC%BA%E9%99%B7%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%83%A1%E5%B9%BF%E5%8D%8E&rft.au=%E6%B6%82%E5%8D%83%E7%A6%A7&rft.date=2024-10-01&rft.pub=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E6%9C%BA%E6%A2%B0%E4%B8%8E%E6%B1%BD%E8%BD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510640&rft.issn=1000-565X&rft.volume=52&rft.issue=10&rft.spage=112&rft.epage=123&rft_id=info:doi/10.12141%2Fj.issn.1000-565X.230638&rft.externalDocID=hnlgdxxb202410011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhnlgdxxb%2Fhnlgdxxb.jpg