GAN图像对抗样本生成方法

TP393; 为了提高生成对抗网络模型对抗样本的多样性和攻击成功率,提出了一种GAN图像对抗样本生成方法.首先,利用原始样本集整体训练一个深度卷积对抗生成网络G1,模拟原始样本集分布;其次,在黑盒攻击场景下,利用模型蒸馏方法对目标模型进行黑盒复制,获取目标模型的本地复制;然后以G1的输出作为输入,以蒸馏模型作为目标模型,训练生成对抗网络G2,在有目标攻击情况下还需输入目标类别,G2用以生成输入数据针对目标类别的扰动;最后将样本与扰动相加并以像素灰度值区间进行规范化,得到对抗样本.实验结果表明,在相同输入条件下该方法产生图像对抗样本平均SSIM指标、MI指标和Cosin相似度分别降低50.7%、...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 15; no. 4; pp. 702 - 711
Main Authors 王曙燕, 金航, 孙家泽
Format Journal Article
LanguageChinese
Published 西安邮电大学 计算机学院,西安 710121 01.04.2021
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2005022

Cover

Abstract TP393; 为了提高生成对抗网络模型对抗样本的多样性和攻击成功率,提出了一种GAN图像对抗样本生成方法.首先,利用原始样本集整体训练一个深度卷积对抗生成网络G1,模拟原始样本集分布;其次,在黑盒攻击场景下,利用模型蒸馏方法对目标模型进行黑盒复制,获取目标模型的本地复制;然后以G1的输出作为输入,以蒸馏模型作为目标模型,训练生成对抗网络G2,在有目标攻击情况下还需输入目标类别,G2用以生成输入数据针对目标类别的扰动;最后将样本与扰动相加并以像素灰度值区间进行规范化,得到对抗样本.实验结果表明,在相同输入条件下该方法产生图像对抗样本平均SSIM指标、MI指标和Cosin相似度分别降低50.7%、10.96%和28.7%,平均均方误差值(MSE)和图像指纹的海明距离分别提升7.6%和1974.80,同时MNIST数据集和CIFAR10数据集下模型平均攻击成功率在95%以上.
AbstractList TP393; 为了提高生成对抗网络模型对抗样本的多样性和攻击成功率,提出了一种GAN图像对抗样本生成方法.首先,利用原始样本集整体训练一个深度卷积对抗生成网络G1,模拟原始样本集分布;其次,在黑盒攻击场景下,利用模型蒸馏方法对目标模型进行黑盒复制,获取目标模型的本地复制;然后以G1的输出作为输入,以蒸馏模型作为目标模型,训练生成对抗网络G2,在有目标攻击情况下还需输入目标类别,G2用以生成输入数据针对目标类别的扰动;最后将样本与扰动相加并以像素灰度值区间进行规范化,得到对抗样本.实验结果表明,在相同输入条件下该方法产生图像对抗样本平均SSIM指标、MI指标和Cosin相似度分别降低50.7%、10.96%和28.7%,平均均方误差值(MSE)和图像指纹的海明距离分别提升7.6%和1974.80,同时MNIST数据集和CIFAR10数据集下模型平均攻击成功率在95%以上.
Author 王曙燕
孙家泽
金航
AuthorAffiliation 西安邮电大学 计算机学院,西安 710121
AuthorAffiliation_xml – name: 西安邮电大学 计算机学院,西安 710121
Author_FL SUN Jiaze
WANG Shuyan
JIN Hang
Author_FL_xml – sequence: 1
  fullname: WANG Shuyan
– sequence: 2
  fullname: JIN Hang
– sequence: 3
  fullname: SUN Jiaze
Author_xml – sequence: 1
  fullname: 王曙燕
– sequence: 2
  fullname: 金航
– sequence: 3
  fullname: 孙家泽
BookMark eNo9jb1KQzEYQDNUsNa-g44O9_olX-5NMpaiVSi66Fy-mybSq6RgFHV2ERcd_BkU9AEEBwfp4tvc-BoqitOBM5yzwFphGhxjSxxyVEqv1vkkxpDzUmFmJNe5AChAiBZr_7t51o1xUkEhpeCq1G22POhtNQ8fzflV8zpLl_fp-T09vnzePKWL63Q3S2-3i2zO00F03T922O762k5_IxtuDzb7vWEWOUjIvLZjX0JlhR8jqLFWjmPlrXJKWo6oDHlnSRsshSHglqQtiIwRDr1Bwg5b-e2eUPAU9kb19PgwfB9Hdaz3T8-OogDxs-KAX_YcT_0
ClassificationCodes TP393
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2005022
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Method for Image Adversarial Samples Generating Based on GAN
EndPage 711
ExternalDocumentID jsjkxyts202104010
GrantInformation_xml – fundername: (陕西省重点研发计划项目); (西安市科技计划项目); (西安邮电大学研究生创新基金项目)
  funderid: (陕西省重点研发计划项目); (西安市科技计划项目); (西安邮电大学研究生创新基金项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1040-f8cdf60bc2fd307d87e13bfc7e74c13379afeca893629a01ca4c5aa992e3f93a3
ISSN 1673-9418
IngestDate Thu May 29 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 神经网络
生成对抗网络(GAN)
对抗样本
模型蒸馏
图像多样性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1040-f8cdf60bc2fd307d87e13bfc7e74c13379afeca893629a01ca4c5aa992e3f93a3
PageCount 10
ParticipantIDs wanfang_journals_jsjkxyts202104010
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2021
Publisher 西安邮电大学 计算机学院,西安 710121
Publisher_xml – name: 西安邮电大学 计算机学院,西安 710121
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.3065524
Snippet TP393; 为了提高生成对抗网络模型对抗样本的多样性和攻击成功率,提出了一种GAN图像对抗样本生成方法.首先,利用原始样本集整体训练一个深度卷积对抗生成网络G1,模拟原始样...
SourceID wanfang
SourceType Aggregation Database
StartPage 702
Title GAN图像对抗样本生成方法
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202104010
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1673-9418
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib002423894
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEI5KuXBBIEC8igpiTlVKEtuxfbS3WSqk9tRKvVVJNgEVaZHYrQQ9cOGCuMCBxwEk-AFIHDigXvg3G_4GM85jAwVUuETj8WM8ntjzOetZe95NLUqeISzw-Uhwn-tU-JqJwmfoXnE7gS5RUjTyxma8vs3v7IidhRNLvVNL-9NsNT_4bVzJ_1gVeWhXipL9B8t2jSIDabQvPtHC-DyWjW-bTUgEaAs2IUIxUEMizBCshiQGZUBLIkwA1hF6AGYAiQTNQQ9dGQU6cFlxU8syqO-kbGErJApMAiakikjotilrHAdbC53cNTAxJBysApW4xrFWRGUsR6I1LzEwR1nXjAWtHUe2Yl0R7RghycYuGjPPcYKojqDO2Ljps13rf8OIwt7RF3rrnBIC7LCpp7STERFdj4cVLouTQq02K3_VvVNZU39Q02hwVMyKpL83C3vrfyyZr3njEloHIXoTgfdWexlEPeAga6_xq09iUirnk0jAaifAfc4Lomjuh7vTkXuTvfuPHk8nNFK4xlIA4ckInRbdTLLxJJmjK8zU_d0hpflPYcoIR7vllq4KiMUcrWKSqSDu0KwImaRf4bo057hfrYNJ217XZ-FIpVt_UshFv43LdHy3B9S2zninmx3Wsqmny1lv4eDeOe86TpXZu2-zpy9mnw-r52-rj1-r95--v_pQPXtZvTmsvrw-720Pk63But_cDuJPaFT8UuWjMg6yPCpH6KhGShYhy8pcFpLnIWNSp2WRp4jH40inQZinPBdpqnVUsFKzlF3wFscPxsVFb1lzVpRZXoSFyHH7EKfRiE6LjTjhu1Bml7wbjUq7zeyf7B4x0uXjFLrinZq__1e9xenD_WIJUe00u-Zs-wO7CG6T
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN%E5%9B%BE%E5%83%8F%E5%AF%B9%E6%8A%97%E6%A0%B7%E6%9C%AC%E7%94%9F%E6%88%90%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E7%8E%8B%E6%9B%99%E7%87%95&rft.au=%E9%87%91%E8%88%AA&rft.au=%E5%AD%99%E5%AE%B6%E6%B3%BD&rft.date=2021-04-01&rft.pub=%E8%A5%BF%E5%AE%89%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E8%A5%BF%E5%AE%89+710121&rft.issn=1673-9418&rft.volume=15&rft.issue=4&rft.spage=702&rft.epage=711&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2005022&rft.externalDocID=jsjkxyts202104010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg