深度学习重建算法联合智能去除金属伪影技术改善危重患者上腹部CT的图像质量

目的 评估基于深度学习算法联合智能去除金属伪影技术(deep learning combined with smart metal artifact reduction,DLMAR)对无法举起手臂且需要心电监护的危重患者上腹部CT图像质量的影响.方法 回顾性纳入无法举起手臂且需要心电监护的102例危重患者.对图像静脉期分别采用滤波反投影(filtered back projection,FBP)、迭代重建(iterative reconstruction,IR)、深度学习(deep learning,DL)、滤波反投影联合智能去除金属伪影技术(filtered back projection...

Full description

Saved in:
Bibliographic Details
Published in四川大学学报(医学版) Vol. 55; no. 6; pp. 1403 - 1409
Main Authors 潘云龙, 姚小玲, 高荣慧, 谢薇, 夏春潮, 李真林, 孙怀强
Format Journal Article
LanguageChinese
Published 四川大学华西医院放射科华西磁共振研究中心(成都 610041) 20.11.2024
Subjects
Online AccessGet full text
ISSN1672-173X
DOI10.12182/20241160102

Cover

Abstract 目的 评估基于深度学习算法联合智能去除金属伪影技术(deep learning combined with smart metal artifact reduction,DLMAR)对无法举起手臂且需要心电监护的危重患者上腹部CT图像质量的影响.方法 回顾性纳入无法举起手臂且需要心电监护的102例危重患者.对图像静脉期分别采用滤波反投影(filtered back projection,FBP)、迭代重建(iterative reconstruction,IR)、深度学习(deep learning,DL)、滤波反投影联合智能去除金属伪影技术(filtered back projection combined with smart metal artifact reduction,FBPMAR)、自适应统计迭代重建联合智能去除金属伪影技术(adaptive statistical iterative reconstruction-V combined with smart metal artifact reduction,IRMAR)、DLMAR共6种算法重建图像.对肝脏无伪影区域、肝脏有金属伪影区域、两手臂间组织(肝、脾、胰、主动脉)的CT值、噪声、信噪比(signal-to-noise ratio,SNR)、对比度噪声比(contrast-to-noise ratio,CNR)进行定量分析.并采用5级评分法,对电极金属伪影、两手臂间结构的显示和图像噪声进行定性分析(1=最差,5=最佳).结果 在肝脏有金属伪影的区域:DLMAR组[(98.5±9.8)H[J]与FBP组[(73.7±5.6)H[J]、IR组[(75.3±7.5)H[J]、DL组[(66.3±11.4)H[J]的 CT值差异有统计学意义(P<0.01);DLMAR与FBPMAR[(99.8±4.8)H[J]、IRMAR[(99.6±3.4)H[J]的CT值差异无统计学意义;DLMAR噪声均低于其他组(P<0.01);DLMAR的SNR和CNR均高于其他组(P<0.01).在两手臂间组织区域:6组的CT值差异无统计学意义;DLMAR噪声均低于其他组(P<0.01);DLMAR的SNR和CNR均高于其他组(P<0.01).FBPMAR、IRMAR、DLMAR组在去金属伪影方面的得分(4.27±0.32、4.44±0.34、4.61±0.28)均高于F
AbstractList 目的 评估基于深度学习算法联合智能去除金属伪影技术(deep learning combined with smart metal artifact reduction,DLMAR)对无法举起手臂且需要心电监护的危重患者上腹部CT图像质量的影响.方法 回顾性纳入无法举起手臂且需要心电监护的102例危重患者.对图像静脉期分别采用滤波反投影(filtered back projection,FBP)、迭代重建(iterative reconstruction,IR)、深度学习(deep learning,DL)、滤波反投影联合智能去除金属伪影技术(filtered back projection combined with smart metal artifact reduction,FBPMAR)、自适应统计迭代重建联合智能去除金属伪影技术(adaptive statistical iterative reconstruction-V combined with smart metal artifact reduction,IRMAR)、DLMAR共6种算法重建图像.对肝脏无伪影区域、肝脏有金属伪影区域、两手臂间组织(肝、脾、胰、主动脉)的CT值、噪声、信噪比(signal-to-noise ratio,SNR)、对比度噪声比(contrast-to-noise ratio,CNR)进行定量分析.并采用5级评分法,对电极金属伪影、两手臂间结构的显示和图像噪声进行定性分析(1=最差,5=最佳).结果 在肝脏有金属伪影的区域:DLMAR组[(98.5±9.8)H[J]与FBP组[(73.7±5.6)H[J]、IR组[(75.3±7.5)H[J]、DL组[(66.3±11.4)H[J]的 CT值差异有统计学意义(P<0.01);DLMAR与FBPMAR[(99.8±4.8)H[J]、IRMAR[(99.6±3.4)H[J]的CT值差异无统计学意义;DLMAR噪声均低于其他组(P<0.01);DLMAR的SNR和CNR均高于其他组(P<0.01).在两手臂间组织区域:6组的CT值差异无统计学意义;DLMAR噪声均低于其他组(P<0.01);DLMAR的SNR和CNR均高于其他组(P<0.01).FBPMAR、IRMAR、DLMAR组在去金属伪影方面的得分(4.27±0.32、4.44±0.34、4.61±0.28)均高于F
Abstract_FL Objective To evaluate the effect of deep learning reconstruction algorithm combined with smart metal artifact reduction(DLMAR)on the quality of abdominal CT images in critically ill patients who are unable to raise their arms and require electrocardiographic(ECG)monitoring.Methods A total of 102 patients were retrospectively enrolled.All subjects were critically ill patients who were unable to raise their arms and required ECG monitoring.Images were reconstructed using 6 algorithms,including filtered back projection(FBP),iterative reconstruction(IR),deep learning(DL),FBP combined with smart metal artifact reduction(FBPMAR),adaptive statistical iterative reconstruction-V combined with smart metal artifact reduction(IRMAR),and DLMAR.A quantitative analysis of CT values,noise,signal-to-noise ratio(SNR),and contrast-to-noise ratio(CNR)was conducted in regions without metal artifacts and regions with metal artifacts in the liver,as well as the tissues,including those from the liver,spleen,pancreas,and aorta,between the two arms.Qualitative analysis of electrode metal artifacts,the visualization of the structures between the two arms,and image noise was performed with a 5-point scoring system(l=worst and 5=best).Results In the regions of the liver with metal artifacts,there was a significant difference between the CT values of the DLMAR group([98.5±9.8]Hounsfield units[H[J])and those of the FBP group([73.7±5.6]HU),the IR group([75.3±7.5]HU),and the DL group([66.3±11.4]HU)(P<0.01).There was no significant difference between the CT values of the DLMAR group and those of the FBPMAR group([99.8±4.8]HU)and the IRMAR group([99.6±3.4]HU)(P>0.05).The noise of the DLMAR group was found to be significantly lower than that of the other groups(P<0.01).Furthermore,the SNR and CNR of the DLMAR group were also found to be higher than those of the other groups(P<0.01).In the tissue region between the two arms,the differences in CT values among the six groups were not statistically significant(P>0.05).The noise of the DLMAR group was lower than those of the other groups(P<0.01),and the SNR and CNR of the DLMAR group were higher than those of the other groups(P<0.01).In terms of the removal of metal artifacts,the scores of the FBPMAR,IRMAR,and DLMAR groups(4.27±0.32,4.44±0.34,and 4.61±0.28,respectively)were higher than those of the FBP,IR,and DL groups(1.36±0.54,1.32±0.45,and 1.24±0.46,respectively)(P<0.01).The DLMAR group also had a higher score of 4.62±0.37 in the visualization of structures between the two arms and 4.53±0.39 in the noise reduction of images,both of which were higher than those of the other groups(P<0.01).Conclusion DLMAR reduces artifacts,decreases noise,and improves the quality of abdominal CT imaging in critically ill patients who are unable to raise their arms and require ECG monitoring.
Author 姚小玲
孙怀强
夏春潮
谢薇
李真林
高荣慧
潘云龙
AuthorAffiliation 四川大学华西医院放射科华西磁共振研究中心(成都 610041)
AuthorAffiliation_xml – name: 四川大学华西医院放射科华西磁共振研究中心(成都 610041)
Author_FL PAN Yunlong
XIA Chunchao
GAO Ronghui
LI Zhenlin
SUN Huaiqiang
YAO Xiaoling
XIE Wei
Author_FL_xml – sequence: 1
  fullname: PAN Yunlong
– sequence: 2
  fullname: YAO Xiaoling
– sequence: 3
  fullname: GAO Ronghui
– sequence: 4
  fullname: XIE Wei
– sequence: 5
  fullname: XIA Chunchao
– sequence: 6
  fullname: LI Zhenlin
– sequence: 7
  fullname: SUN Huaiqiang
Author_xml – sequence: 1
  fullname: 潘云龙
– sequence: 2
  fullname: 姚小玲
– sequence: 3
  fullname: 高荣慧
– sequence: 4
  fullname: 谢薇
– sequence: 5
  fullname: 夏春潮
– sequence: 6
  fullname: 李真林
– sequence: 7
  fullname: 孙怀强
BookMark eNotkEtLAlEAhe_CIDN3_YkWU_fVzJ1lSC8Q2hi0k7nzyB6M0BDZzlKZEMwCK6yIoBAJKoaCUrNf473O_IuU2pyzOt-BbwrE3LxrAzCD4BzCiOF5DDFFSIUI4hiII1XDCtLI5iRIet42hxAhSHSmxUFOfgai2xIvrUHnIfJrotcdvl7L98vwuCHOT2WzG5b64qwXNZ8i_0IE94PvZ9EPZLUo795koyOuyqIWjIby5DEsVgZf1bDSiUrtVGZ4Uxa3P6JUDz_akV-fBhOOsefZyf9OgI3lpUxqVUmvr6ylFtOKhyCFigE5J7pJVBtjoqm2qmJKTcYwtTBjRLdHAU2LqNTSDduxGecmNhl3NA2Z-gIlCTD7xz00XMdwt7I7-YN9d_SYzRWOdq1CgY_dwLEa8gvlA35v
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12182/20241160102
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Deep Learning Reconstruction Algorithm Combined With Smart Metal Artifact Reduction Technique Improves Image Quality of Upper Abdominal CT in Critically Ill Patients
EndPage 1409
ExternalDocumentID hxykdxxb202406010
GrantInformation_xml – fundername: (四川省科技厅重点研发项目); (四川大学华西医院学科卓越发展工程项目)
  funderid: (四川省科技厅重点研发项目); (四川大学华西医院学科卓越发展工程项目)
GroupedDBID -05
2B.
4A8
5XA
5XF
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CIEJG
PSX
RPM
TCJ
U1G
U5O
ID FETCH-LOGICAL-s1040-a0bb39c36e22376e66244c8824d28839e8830cd364d9aefe8bbc2c8bf771c9543
ISSN 1672-173X
IngestDate Thu May 29 04:01:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Deep learning
Metal artifact
危重患者
深度学习
Critically ill patients
金属伪影
腹部计算机断层扫描
Abdominal CT
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1040-a0bb39c36e22376e66244c8824d28839e8830cd364d9aefe8bbc2c8bf771c9543
PageCount 7
ParticipantIDs wanfang_journals_hxykdxxb202406010
PublicationCentury 2000
PublicationDate 2024-11-20
PublicationDateYYYYMMDD 2024-11-20
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-20
  day: 20
PublicationDecade 2020
PublicationTitle 四川大学学报(医学版)
PublicationTitle_FL Journal of Sichuan University(Medical Sciences)
PublicationYear 2024
Publisher 四川大学华西医院放射科华西磁共振研究中心(成都 610041)
Publisher_xml – name: 四川大学华西医院放射科华西磁共振研究中心(成都 610041)
SSID ssib001103987
ssib000948209
ssib051370877
ssib000970525
ssib002039726
ssib001186719
ssib051810681
ssib009993695
ssib006703882
ssj0001742280
ssib002263209
Score 2.439591
Snippet 目的 评估基于深度学习算法联合智能去除金属伪影技术(deep learning combined with smart metal artifact reduction,DLMAR)对无法举起手臂且需要心电监护的危重患者上腹...
SourceID wanfang
SourceType Aggregation Database
StartPage 1403
Title 深度学习重建算法联合智能去除金属伪影技术改善危重患者上腹部CT的图像质量
URI https://d.wanfangdata.com.cn/periodical/hxykdxxb202406010
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  issn: 1672-173X
  databaseCode: RPM
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  omitProxy: true
  ssIdentifier: ssj0001742280
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEA-1vvgiiorfFHGf5DQfm_143NzlKII-VfBNktzFgnCCrVD1Ra1SEbQKVamKCIqIoHIoaKv1r2nOu__CmUnuEq0PVShhm52dnf3NXHZn2Zm1rKOxk8DEYfs1AWvXGvfTuKZlyuHhpHHL5qmgJK6nTovJM_zkWf_s2Pi1anTJbHw8ufrXuJL_0Sq8A71ilOw_aHbEFF5AGfQLT9AwPDelYxYKFkgWOCz0WWCYEVgwDSpwFmhmbBZqBg6_ahBNgGShZCZkWlJzj2mfhQpWlExzpNE2UwqrtCZiqPJYQM1ViByAIVQZXnDWee_QPKRO68wYetMgwQRTBo9TIEOoalKBZMO-oJY6VTnxSFR47zLjUe8gj0-cFbLCNz411yiYUfUpHJA2BScNQwyJpcdUE8kDDlRD3r8dYyzo4Q_lBSY0ShiZkRUgRwUaigFZmjhKBAl6qRMkIxroQlNVTjPaZiGsG0wrGokh1DRKqiskPnasc_Rskl4S5m5JAsAHxEUhToiQQDyMLEkUNjYuFhBfWd3YcTlGOLr26Ke4WQigM5AEWML4g2Zl5LkxuEO1hkPhOZnZ0Dz-bC5RdJVX-UM7yc1DotHqvDkgJArVm9yAm6hXl-wTUNZ2YQZB45jArITOcGcrn2eFdGuOpKugRxNxnq-5-OBUZ1XMKVlZoWGOtr_O_ngbAUY4AZiOgzsNbrnKGZ09nZ67cqE1NxcjFSYjsrdYW10Jn6QNW30cVsdVX0TinY-lr4GHKCq-jUOpIiu-BlTLqu-ONyNU-AmJiZhK3wI8NU-UQfK-40lM1ln-rxxbFEHitIEsMXsfBXwPwSwCexCGExUQKB6xk0ad85Wl89QOa3vh806Y_AO20xq7Or3Lmu596Warb7L3b9ZXXg4W7mXfVn9-eNL79Kh_Yyl7cKe3vNqfX8vufxssvx4sPMy6L9a_v8vWur2713vPP_aWVrLHt7J7XWjYu_mqf_32-te7_dsrg_m39amfT29lz35k84v9z28HC4u7rTPNcKo-WSuufanNOHi-ObLj2NOJJ9ouHtlrg2o4TwAq3sKr0XUbHnbS8gRv6aidtlUcJ26i4lRKJ9E-9_ZY452LnfZeayKNoihupa4AN5Y7sdApLE8ikTg6ikTspfusIwUy54rP-sy5DfaxfzNEB6xt5W_4oDU-e-ly-xC4K7PxYTKrXxIW9BE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E9%87%8D%E5%BB%BA%E7%AE%97%E6%B3%95%E8%81%94%E5%90%88%E6%99%BA%E8%83%BD%E5%8E%BB%E9%99%A4%E9%87%91%E5%B1%9E%E4%BC%AA%E5%BD%B1%E6%8A%80%E6%9C%AF%E6%94%B9%E5%96%84%E5%8D%B1%E9%87%8D%E6%82%A3%E8%80%85%E4%B8%8A%E8%85%B9%E9%83%A8CT%E7%9A%84%E5%9B%BE%E5%83%8F%E8%B4%A8%E9%87%8F&rft.jtitle=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E5%8C%BB%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%BD%98%E4%BA%91%E9%BE%99&rft.au=%E5%A7%9A%E5%B0%8F%E7%8E%B2&rft.au=%E9%AB%98%E8%8D%A3%E6%85%A7&rft.au=%E8%B0%A2%E8%96%87&rft.date=2024-11-20&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8D%8E%E8%A5%BF%E5%8C%BB%E9%99%A2%E6%94%BE%E5%B0%84%E7%A7%91%E5%8D%8E%E8%A5%BF%E7%A3%81%E5%85%B1%E6%8C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%28%E6%88%90%E9%83%BD+610041%29&rft.issn=1672-173X&rft.volume=55&rft.issue=6&rft.spage=1403&rft.epage=1409&rft_id=info:doi/10.12182%2F20241160102&rft.externalDocID=hxykdxxb202406010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhxykdxxb%2Fhxykdxxb.jpg