基于超分辨率超声图像的缺陷量化方法
TG115.28+5; 以相位相干多信号分类(phase-coherent multiple signal classification,PC-MUSIC)方法为例,研究基于超分辨率超声图像的缺陷量化方法.利用全矩阵采集方法从被测对象获取超声阵列数据,对数据进行时域预处理,提取缺陷散射信号;利用PC-MUSIC方法处理缺陷散射信号,获取超分辨率超声图像;分析超声图像特征,提取横向强度曲线,定义-6 dB主瓣宽度作为缺陷的评估长度.搭建实验系统,选择铝试块作为被测对象,在其内部加工1个长度为10 mm的刻槽作为缺陷.实验结果表明,在信号子空间维度选择合适的情况下,PC-MUSIC方法能够准确评估...
Saved in:
| Published in | 国防科技大学学报 Vol. 44; no. 5; pp. 187 - 192 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
国防科技大学空天科学学院,湖南长沙 410073
01.10.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-2486 |
| DOI | 10.11887/j.cn.202205020 |
Cover
| Abstract | TG115.28+5; 以相位相干多信号分类(phase-coherent multiple signal classification,PC-MUSIC)方法为例,研究基于超分辨率超声图像的缺陷量化方法.利用全矩阵采集方法从被测对象获取超声阵列数据,对数据进行时域预处理,提取缺陷散射信号;利用PC-MUSIC方法处理缺陷散射信号,获取超分辨率超声图像;分析超声图像特征,提取横向强度曲线,定义-6 dB主瓣宽度作为缺陷的评估长度.搭建实验系统,选择铝试块作为被测对象,在其内部加工1个长度为10 mm的刻槽作为缺陷.实验结果表明,在信号子空间维度选择合适的情况下,PC-MUSIC方法能够准确评估缺陷长度,误差在10%以内. |
|---|---|
| AbstractList | TG115.28+5; 以相位相干多信号分类(phase-coherent multiple signal classification,PC-MUSIC)方法为例,研究基于超分辨率超声图像的缺陷量化方法.利用全矩阵采集方法从被测对象获取超声阵列数据,对数据进行时域预处理,提取缺陷散射信号;利用PC-MUSIC方法处理缺陷散射信号,获取超分辨率超声图像;分析超声图像特征,提取横向强度曲线,定义-6 dB主瓣宽度作为缺陷的评估长度.搭建实验系统,选择铝试块作为被测对象,在其内部加工1个长度为10 mm的刻槽作为缺陷.实验结果表明,在信号子空间维度选择合适的情况下,PC-MUSIC方法能够准确评估缺陷长度,误差在10%以内. |
| Author | 樊程广 余孙全 杨磊 高斌 |
| AuthorAffiliation | 国防科技大学空天科学学院,湖南长沙 410073 |
| AuthorAffiliation_xml | – name: 国防科技大学空天科学学院,湖南长沙 410073 |
| Author_FL | GAO Bin YANG Lei FAN Chengguang YU Sunquan |
| Author_FL_xml | – sequence: 1 fullname: FAN Chengguang – sequence: 2 fullname: YU Sunquan – sequence: 3 fullname: GAO Bin – sequence: 4 fullname: YANG Lei |
| Author_xml | – sequence: 1 fullname: 樊程广 – sequence: 2 fullname: 余孙全 – sequence: 3 fullname: 高斌 – sequence: 4 fullname: 杨磊 |
| BookMark | eNrjYmDJy89LZWAQNzTQMzS0sDDXz9JLztMzMjAyMjA1MDJgYeA0NDAw1DUysTDjYOAtLs5MMjAyNjQzNzQ35GQwfjp_15NdfS-2tT7taHuxb8XzvnYQe_GGp7P3PW3ufz6r5fmeXS9nbn_Z3v-0Z9qzaTufbZ7Kw8CalphTnMoLpbkZQt1cQ5w9dH383T2dHX10iw0NTAx0LVKTUpNSTC1MDVJMEk2TLQ3MEtPSTFMSjS0Sk1JNgDKJZgamJkap5hYppqbGBubmBmnJ5oaWKYmmJokmQM3G3AyaEHPLE_PSEvPS47PyS4vygDbGp6dlZ6VUVCTBPWkMAOV4W0Q |
| ClassificationCodes | TG115.28+5 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11887/j.cn.202205020 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Military & Naval Science |
| DocumentTitle_FL | Defect quantification based on super-resolved ultrasonic image |
| EndPage | 192 |
| ExternalDocumentID | gfkjdxxb202205020 |
| GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (61601489) |
| GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 PSX TCJ TGT TN5 U1G U5M |
| ID | FETCH-LOGICAL-s1040-8ebebd5850d4a5c906aff5da38abe4bd5a60542e78d5530770fc719da54a48eb3 |
| ISSN | 1001-2486 |
| IngestDate | Thu May 29 04:04:51 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | 缺陷量化 超声图像 超分辨率 无损检测 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1040-8ebebd5850d4a5c906aff5da38abe4bd5a60542e78d5530770fc719da54a48eb3 |
| PageCount | 6 |
| ParticipantIDs | wanfang_journals_gfkjdxxb202205020 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 国防科技大学学报 |
| PublicationTitle_FL | Journal of National University of Defense Technology |
| PublicationYear | 2022 |
| Publisher | 国防科技大学空天科学学院,湖南长沙 410073 |
| Publisher_xml | – name: 国防科技大学空天科学学院,湖南长沙 410073 |
| SSID | ssib023167171 ssib057620141 ssib051370975 ssib001129263 ssj0000556656 |
| Score | 2.353921 |
| Snippet | TG115.28+5; 以相位相干多信号分类(phase-coherent multiple signal classification,PC-MUSIC)方法为例,研究基于超分辨率超声图像的缺陷量化方法.利用全矩阵采集方法从被... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 187 |
| Title | 基于超分辨率超声图像的缺陷量化方法 |
| URI | https://d.wanfangdata.com.cn/periodical/gfkjdxxb202205020 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-2486 databaseCode: ADMLS dateStart: 20181028 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620141 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-1vXgRP6mfPMR4kafZbHY3OWbf20cR24st9FayXxWFJ_QDaq9W60HakwX14MGLR0FQLNK_xteP_8KZbN7blXqovYQh-e0kmdnszCzJhJA7fupFflr6bRGyvC1ywdupb9K2idBb4F6eGfw1MD0TTs2Jh_PB_NiZjcaupdWV9H62_s9zJafRKtSBXvGU7H9odsQUKoAG_UIJGobyRDqmSUBVj8aaJgJLmdBE0jikMsAmKakMbU1CtaRJhAAI_psY7dOYWT4xwvApn8oeghUwFEjEHduFokrROEICmCAGwB2qoIsQy1ghEfu0us9y6PIOmXctB-iaI08N_D3ES42bLXAkAiuR6FIdNgiL0cHw1cAKmA3UIRsgYsRC53GvhgjsD4ZbcakImLCWNURRHeN4qsHLTpO_6jqBgXikbv4ZgaB6uMeuepdPOz3AKCvWqkk1njouAit6zWE9WBErK3SYEUzN6kOBAHq2iQPynsBNKX7D3uCONi5cNnBnkKqEmG7hBQ3r4jnfpHJUvOoSweM2UOJvJDCCGeb3xYPUjLPa3I82YS6Wz57ma2vpCHOGTHCwjWycTOju9KPHtVsNTiGv07RxzJ7g1WFE4PkRU7UbGiATz7nZVY59CBrsRcqj-bosWzjWB3-P1J6e65emv9hw9GbPk3MuQmvparldIGPrTy6SyWmbzX7pRetua8bAGm45o3iJ-INPu793tw6_vxq8eX249-VgaxPpz18HH_cGL7cPPmwc_No9ev_jaHN78HZnf-fn_rd3l8lcL5ntTLXdVSTtZQ_33Er41qU5hNYsFybIFAtNWQa58aVJCwEtJoTYhxeRzPEerihiZQZfu9wEwgh42L9CxvvP-8UkaRUsMAyieiEKIwKIGqM8i1jBy0hwlvH0Krnt5r_gPjXLC8dUde0koOvkbL0sbpDxlaXV4ia40CvpLafhP6W8kg8 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%B6%85%E5%88%86%E8%BE%A8%E7%8E%87%E8%B6%85%E5%A3%B0%E5%9B%BE%E5%83%8F%E7%9A%84%E7%BC%BA%E9%99%B7%E9%87%8F%E5%8C%96%E6%96%B9%E6%B3%95&rft.jtitle=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%A8%8A%E7%A8%8B%E5%B9%BF&rft.au=%E4%BD%99%E5%AD%99%E5%85%A8&rft.au=%E9%AB%98%E6%96%8C&rft.au=%E6%9D%A8%E7%A3%8A&rft.date=2022-10-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%A9%BA%E5%A4%A9%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410073&rft.issn=1001-2486&rft.volume=44&rft.issue=5&rft.spage=187&rft.epage=192&rft_id=info:doi/10.11887%2Fj.cn.202205020&rft.externalDocID=gfkjdxxb202205020 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgfkjdxxb%2Fgfkjdxxb.jpg |