基于特征辨识和变分自编码器网络的工商业空调负荷辨识
TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量.提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类.针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算.以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性.算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获...
Saved in:
Published in | 电力自动化设备 Vol. 44; no. 12; pp. 61 - 68 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1006-6047 |
DOI | 10.16081/j.epae.202411005 |
Cover
Abstract | TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量.提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类.针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算.以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性.算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获取用户的用电设备信息和用电行为信息的条件下准确辨识用户空调负荷功率,为量化空调负荷参与需求响应的可调潜力提供了基础. |
---|---|
AbstractList | TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量.提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类.针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算.以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性.算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获取用户的用电设备信息和用电行为信息的条件下准确辨识用户空调负荷功率,为量化空调负荷参与需求响应的可调潜力提供了基础. |
Abstract_FL | The accurate calculation of air conditioning load power is crucial for implementing its demand-side management.For this purpose,an air conditioning load identification method for industrial and commer-cial users based on feature recognition and variational auto-encoder network is proposed.For continuous daily load curves of customers,a similarity measure of load curve shape based on locally weighted linear fitting and fast dynamic time warping is proposed to achieve the measurement of load curve shape fea-tures.An ordering points to identify the clustering structure-based algorithm is proposed to achieve the classification of load curves.For the daily load sequence of users under the same classification type,a variational auto-encoder network-based air conditioning load identification method is proposed to achieve accurate calculation of the power consumption for air conditioning loads.The effectiveness of the proposed method is verified by the power consumption data of processing and manufacturing industry and commer-cial office building users in a city of Zhejiang Province.The simulation results show that the proposed method can effectively identify the user's power consumption of air conditioning loads without the need of high-frequency sampling data of smart meters and obtaining the user's electrical equipment information and electrical behavior in advance,which provides a basis for quantifying the users'adjustable potential of air conditioning loads to participate in demand response. |
Author | 马闯 谭伟涛 姚冰峰 王朝亮 林振智 郭大琦 麻吕斌 |
AuthorAffiliation | 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007 |
AuthorAffiliation_xml | – name: 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007 |
Author_FL | WANG Chaoliang GUO Daqi TAN Weitao LIN Zhenzhi YAO Bingfeng MA Lübin MA Chuang |
Author_FL_xml | – sequence: 1 fullname: TAN Weitao – sequence: 2 fullname: YAO Bingfeng – sequence: 3 fullname: GUO Daqi – sequence: 4 fullname: MA Chuang – sequence: 5 fullname: MA Lübin – sequence: 6 fullname: WANG Chaoliang – sequence: 7 fullname: LIN Zhenzhi |
Author_xml | – sequence: 1 fullname: 谭伟涛 – sequence: 2 fullname: 姚冰峰 – sequence: 3 fullname: 郭大琦 – sequence: 4 fullname: 马闯 – sequence: 5 fullname: 麻吕斌 – sequence: 6 fullname: 王朝亮 – sequence: 7 fullname: 林振智 |
BookMark | eNotj7tKA0EARaeIYIz5AP_AZteZneeWEnxhwEbrMNmZVUPYiIsIdkFZFXygoGgQYiNEGy2E6Kr5mgwzn2EwVqe653KmQCFpJRqAGQR9xKBAcw1f70jtBzAgCEFIC6A4AvMYJHwSlNN0uw4pwpxQJIpg1XTzYX5hTz_NoO0GPfeameszc3lnTjJ3_GK_b-1j29z37M-V_XqwnSPTfzI32fCjY59z93bo3rvuvD8eToOJWDZTXf5nCWwsLqxXlr3q2tJKZb7qpQji0JMYRQIJHUdUChrjgEGqpeACMs6UwiqMiCaYaBxxzVTIEA0V0kRirjnGIS6B2bF3XyaxTDZrjdbebjJ6rKnmgdpK63_tAYQh_gWbuGwy |
ClassificationCodes | TM714 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16081/j.epae.202411005 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Identification of industrial and commercial air conditioning load based on feature recognition and variational auto-encoder network |
EndPage | 68 |
ExternalDocumentID | dlzdhsb202412009 |
GroupedDBID | 2B. 4A8 92I 93N ADMLS ALMA_UNASSIGNED_HOLDINGS PSX TCJ |
ID | FETCH-LOGICAL-s1039-a31c818efc5a85f32605ea8780676dd3d9c4e434e3c7e6d96159d1e4a37e73393 |
ISSN | 1006-6047 |
IngestDate | Thu May 29 03:54:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Keywords | air conditioning loads 负荷辨识 工商业用户 industrial and commercial users 空调负荷 variational auto-encoder network 局部加权线性拟合 变分自编码器网络 load identification OPTICS算法 local weighted linear fitting OPTICS algorithm |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1039-a31c818efc5a85f32605ea8780676dd3d9c4e434e3c7e6d96159d1e4a37e73393 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_dlzdhsb202412009 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 电力自动化设备 |
PublicationTitle_FL | Electric Power Automation Equipment |
PublicationYear | 2024 |
Publisher | 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007 |
Publisher_xml | – name: 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007 |
SSID | ssib051374518 ssib006563412 ssib023167001 ssib000271330 ssib001129761 ssib036435470 ssib057620044 |
Score | 2.4726748 |
Snippet | TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 61 |
Title | 基于特征辨识和变分自编码器网络的工商业空调负荷辨识 |
URI | https://d.wanfangdata.com.cn/periodical/dlzdhsb202412009 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1006-6047 databaseCode: ADMLS dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620044 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RQEA-lvXgRRcVvKvhOZXU37-V9HF92sxS1Xmyht5JNsvYgK9j20ltRqoIfKChahHoRqhc9CNWq_Wsasn-GM5N0E7s9tAUvYfa9eb-ZebNJZpJ5L45zNeyqTpzIqMbr2tREHHdrOlGyJrjsJLjDXdTBB_pTt-XkjLgx682OjG1UqpaWFjvXouV915UcxavQBn7FVbKH8OwAFBqABv_CETwMxwP5mAUeM23mWxYIPOqABYppw3yDXX4AcSILNBJWI2HbTEsa5TLdREK3mdFEaOqCo2LWIo7fZEYiYeuEA6MM4UBXi5kGET4zTSQMSBckFPg9YvYIEBTT2Is4hlQFfQCQEyFQfxTawoFDqlZDZ5ICaASuLTN-RVtqsbkhudqAECAatFiIlwe320K-bZFqTZIvmS8Br2SBMWRSQDYAOxrGgShZDJqAKIQP7Kge4MoqC1hsm0gYULNdfcLiij3VKqQFTTESDdJrAO2hJCsnKnNAapnqlCucAO0PuEkuKODCaTSMPoGUaRUmAIQJJvA1jKuYm_vPRzeXzh5WT6HvdWM_x0jqMoUKhiZQezQZ9J-D_8SQeHJIQMOrgP-OOowp-AHyHKNFpwadI2gKEG1mySZQ35Ip6PC8xWL1z0EsOJIu_3taD6WUqsQk-NBP1vONaXeDlnzT1N2Ls1sJQfJvGxTBbP7JqqEwSUIiQHEScOFewRDGgxSvjAkHlbrxveV4fqFDLPlK6TFXSemOOmO2NXXrTrWCocGrb-ghkVCVNfOQN3JRplIu7sCxW_ICvzlkRp4oYwcP7hPCK-NmD4I2LD6h4pViPooiFTTm-l5TaA1mrxv27lbShekTzvEizx-3-UX7pDOyPH_KuZmub-1svcie_ky3V_rbG_2vq-nrZ-nLd-mT1f7jL9nvt9nHlfT9RvbnVfbrQ7b2KN38lL5Z3fmxln3e6n972P--3n--mQ887cy0g-nmZK34mk1tgcptQt6IIDtKupEXaq_L8UFSEmqlIV-QccxjE4lEcJHwSCUyNpBqmriRiJCrRHFu-BlntHe_l5x1xiHtjeoq6WBuKBI3MpCEqq5UEUyprofuOedKYfxccbdamNvryPMH4LngHCuvhxed0cUHS8klyMEWO5cL9_8FwjcRwQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E8%BE%A8%E8%AF%86%E5%92%8C%E5%8F%98%E5%88%86%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8%E7%BD%91%E7%BB%9C%E7%9A%84%E5%B7%A5%E5%95%86%E4%B8%9A%E7%A9%BA%E8%B0%83%E8%B4%9F%E8%8D%B7%E8%BE%A8%E8%AF%86&rft.jtitle=%E7%94%B5%E5%8A%9B%E8%87%AA%E5%8A%A8%E5%8C%96%E8%AE%BE%E5%A4%87&rft.au=%E8%B0%AD%E4%BC%9F%E6%B6%9B&rft.au=%E5%A7%9A%E5%86%B0%E5%B3%B0&rft.au=%E9%83%AD%E5%A4%A7%E7%90%A6&rft.au=%E9%A9%AC%E9%97%AF&rft.date=2024-12-01&rft.pub=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310027%25%E5%9B%BD%E7%BD%91%E6%B5%99%E6%B1%9F%E7%9C%81%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E6%9D%AD%E5%B7%9E%E4%BE%9B%E7%94%B5%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310000%25%E5%8D%8E%E4%BA%91%E4%BF%A1%E6%81%AF%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310000%25%E5%9B%BD%E7%BD%91%E6%B5%99%E6%B1%9F%E7%9C%81%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310007&rft.issn=1006-6047&rft.volume=44&rft.issue=12&rft.spage=61&rft.epage=68&rft_id=info:doi/10.16081%2Fj.epae.202411005&rft.externalDocID=dlzdhsb202412009 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdlzdhsb%2Fdlzdhsb.jpg |