基于特征辨识和变分自编码器网络的工商业空调负荷辨识

TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量.提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类.针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算.以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性.算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获...

Full description

Saved in:
Bibliographic Details
Published in电力自动化设备 Vol. 44; no. 12; pp. 61 - 68
Main Authors 谭伟涛, 姚冰峰, 郭大琦, 马闯, 麻吕斌, 王朝亮, 林振智
Format Journal Article
LanguageChinese
Published 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007 01.12.2024
Subjects
Online AccessGet full text
ISSN1006-6047
DOI10.16081/j.epae.202411005

Cover

Abstract TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量.提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类.针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算.以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性.算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获取用户的用电设备信息和用电行为信息的条件下准确辨识用户空调负荷功率,为量化空调负荷参与需求响应的可调潜力提供了基础.
AbstractList TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出基于局部加权线性拟合和快速动态时间规整的负荷曲线形态相似度度量方法,以实现对负荷曲线形态特征的度量.提出基于点排序的聚类结构辨识算法的日负荷序列特征辨识方法,以实现对负荷曲线的分类.针对同一特征类型下的用户日负荷序列,提出基于变分自编码器网络的空调负荷辨识算法,以实现空调负荷功率的准确计算.以浙江某市的加工制造业和商业写字楼宇用户负荷数据验证本文所提方法的有效性.算例仿真结果表明,所提方法可以在无需电表高频采样数据、无须预先获取用户的用电设备信息和用电行为信息的条件下准确辨识用户空调负荷功率,为量化空调负荷参与需求响应的可调潜力提供了基础.
Abstract_FL The accurate calculation of air conditioning load power is crucial for implementing its demand-side management.For this purpose,an air conditioning load identification method for industrial and commer-cial users based on feature recognition and variational auto-encoder network is proposed.For continuous daily load curves of customers,a similarity measure of load curve shape based on locally weighted linear fitting and fast dynamic time warping is proposed to achieve the measurement of load curve shape fea-tures.An ordering points to identify the clustering structure-based algorithm is proposed to achieve the classification of load curves.For the daily load sequence of users under the same classification type,a variational auto-encoder network-based air conditioning load identification method is proposed to achieve accurate calculation of the power consumption for air conditioning loads.The effectiveness of the proposed method is verified by the power consumption data of processing and manufacturing industry and commer-cial office building users in a city of Zhejiang Province.The simulation results show that the proposed method can effectively identify the user's power consumption of air conditioning loads without the need of high-frequency sampling data of smart meters and obtaining the user's electrical equipment information and electrical behavior in advance,which provides a basis for quantifying the users'adjustable potential of air conditioning loads to participate in demand response.
Author 马闯
谭伟涛
姚冰峰
王朝亮
林振智
郭大琦
麻吕斌
AuthorAffiliation 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007
AuthorAffiliation_xml – name: 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007
Author_FL WANG Chaoliang
GUO Daqi
TAN Weitao
LIN Zhenzhi
YAO Bingfeng
MA Lübin
MA Chuang
Author_FL_xml – sequence: 1
  fullname: TAN Weitao
– sequence: 2
  fullname: YAO Bingfeng
– sequence: 3
  fullname: GUO Daqi
– sequence: 4
  fullname: MA Chuang
– sequence: 5
  fullname: MA Lübin
– sequence: 6
  fullname: WANG Chaoliang
– sequence: 7
  fullname: LIN Zhenzhi
Author_xml – sequence: 1
  fullname: 谭伟涛
– sequence: 2
  fullname: 姚冰峰
– sequence: 3
  fullname: 郭大琦
– sequence: 4
  fullname: 马闯
– sequence: 5
  fullname: 麻吕斌
– sequence: 6
  fullname: 王朝亮
– sequence: 7
  fullname: 林振智
BookMark eNotj7tKA0EARaeIYIz5AP_AZteZneeWEnxhwEbrMNmZVUPYiIsIdkFZFXygoGgQYiNEGy2E6Kr5mgwzn2EwVqe653KmQCFpJRqAGQR9xKBAcw1f70jtBzAgCEFIC6A4AvMYJHwSlNN0uw4pwpxQJIpg1XTzYX5hTz_NoO0GPfeameszc3lnTjJ3_GK_b-1j29z37M-V_XqwnSPTfzI32fCjY59z93bo3rvuvD8eToOJWDZTXf5nCWwsLqxXlr3q2tJKZb7qpQji0JMYRQIJHUdUChrjgEGqpeACMs6UwiqMiCaYaBxxzVTIEA0V0kRirjnGIS6B2bF3XyaxTDZrjdbebjJ6rKnmgdpK63_tAYQh_gWbuGwy
ClassificationCodes TM714
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16081/j.epae.202411005
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Identification of industrial and commercial air conditioning load based on feature recognition and variational auto-encoder network
EndPage 68
ExternalDocumentID dlzdhsb202412009
GroupedDBID 2B.
4A8
92I
93N
ADMLS
ALMA_UNASSIGNED_HOLDINGS
PSX
TCJ
ID FETCH-LOGICAL-s1039-a31c818efc5a85f32605ea8780676dd3d9c4e434e3c7e6d96159d1e4a37e73393
ISSN 1006-6047
IngestDate Thu May 29 03:54:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords air conditioning loads
负荷辨识
工商业用户
industrial and commercial users
空调负荷
variational auto-encoder network
局部加权线性拟合
变分自编码器网络
load identification
OPTICS算法
local weighted linear fitting
OPTICS algorithm
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1039-a31c818efc5a85f32605ea8780676dd3d9c4e434e3c7e6d96159d1e4a37e73393
PageCount 8
ParticipantIDs wanfang_journals_dlzdhsb202412009
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 电力自动化设备
PublicationTitle_FL Electric Power Automation Equipment
PublicationYear 2024
Publisher 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007
Publisher_xml – name: 浙江大学 电气工程学院,浙江 杭州 310027%国网浙江省电力有限公司杭州供电公司,浙江 杭州 310000%华云信息科技有限公司,浙江 杭州 310000%国网浙江省电力有限公司,浙江 杭州 310007
SSID ssib051374518
ssib006563412
ssib023167001
ssib000271330
ssib001129761
ssib036435470
ssib057620044
Score 2.4726748
Snippet TM714; 空调负荷功率的准确计算是实现其需求侧管理的关键,为此,提出基于负荷曲线特征辨识和变分自编码器网络的工商业用户空调负荷辨识方法.针对用户的连续日负荷曲线,提出...
SourceID wanfang
SourceType Aggregation Database
StartPage 61
Title 基于特征辨识和变分自编码器网络的工商业空调负荷辨识
URI https://d.wanfangdata.com.cn/periodical/dlzdhsb202412009
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1006-6047
  databaseCode: ADMLS
  dateStart: 20200101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620044
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RQEA-lvXgRRcVvKvhOZXU37-V9HF92sxS1Xmyht5JNsvYgK9j20ltRqoIfKChahHoRqhc9CNWq_Wsasn-GM5N0E7s9tAUvYfa9eb-ZebNJZpJ5L45zNeyqTpzIqMbr2tREHHdrOlGyJrjsJLjDXdTBB_pTt-XkjLgx682OjG1UqpaWFjvXouV915UcxavQBn7FVbKH8OwAFBqABv_CETwMxwP5mAUeM23mWxYIPOqABYppw3yDXX4AcSILNBJWI2HbTEsa5TLdREK3mdFEaOqCo2LWIo7fZEYiYeuEA6MM4UBXi5kGET4zTSQMSBckFPg9YvYIEBTT2Is4hlQFfQCQEyFQfxTawoFDqlZDZ5ICaASuLTN-RVtqsbkhudqAECAatFiIlwe320K-bZFqTZIvmS8Br2SBMWRSQDYAOxrGgShZDJqAKIQP7Kge4MoqC1hsm0gYULNdfcLiij3VKqQFTTESDdJrAO2hJCsnKnNAapnqlCucAO0PuEkuKODCaTSMPoGUaRUmAIQJJvA1jKuYm_vPRzeXzh5WT6HvdWM_x0jqMoUKhiZQezQZ9J-D_8SQeHJIQMOrgP-OOowp-AHyHKNFpwadI2gKEG1mySZQ35Ip6PC8xWL1z0EsOJIu_3taD6WUqsQk-NBP1vONaXeDlnzT1N2Ls1sJQfJvGxTBbP7JqqEwSUIiQHEScOFewRDGgxSvjAkHlbrxveV4fqFDLPlK6TFXSemOOmO2NXXrTrWCocGrb-ghkVCVNfOQN3JRplIu7sCxW_ICvzlkRp4oYwcP7hPCK-NmD4I2LD6h4pViPooiFTTm-l5TaA1mrxv27lbShekTzvEizx-3-UX7pDOyPH_KuZmub-1svcie_ky3V_rbG_2vq-nrZ-nLd-mT1f7jL9nvt9nHlfT9RvbnVfbrQ7b2KN38lL5Z3fmxln3e6n972P--3n--mQ887cy0g-nmZK34mk1tgcptQt6IIDtKupEXaq_L8UFSEmqlIV-QccxjE4lEcJHwSCUyNpBqmriRiJCrRHFu-BlntHe_l5x1xiHtjeoq6WBuKBI3MpCEqq5UEUyprofuOedKYfxccbdamNvryPMH4LngHCuvhxed0cUHS8klyMEWO5cL9_8FwjcRwQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E8%BE%A8%E8%AF%86%E5%92%8C%E5%8F%98%E5%88%86%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8%E7%BD%91%E7%BB%9C%E7%9A%84%E5%B7%A5%E5%95%86%E4%B8%9A%E7%A9%BA%E8%B0%83%E8%B4%9F%E8%8D%B7%E8%BE%A8%E8%AF%86&rft.jtitle=%E7%94%B5%E5%8A%9B%E8%87%AA%E5%8A%A8%E5%8C%96%E8%AE%BE%E5%A4%87&rft.au=%E8%B0%AD%E4%BC%9F%E6%B6%9B&rft.au=%E5%A7%9A%E5%86%B0%E5%B3%B0&rft.au=%E9%83%AD%E5%A4%A7%E7%90%A6&rft.au=%E9%A9%AC%E9%97%AF&rft.date=2024-12-01&rft.pub=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310027%25%E5%9B%BD%E7%BD%91%E6%B5%99%E6%B1%9F%E7%9C%81%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E6%9D%AD%E5%B7%9E%E4%BE%9B%E7%94%B5%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310000%25%E5%8D%8E%E4%BA%91%E4%BF%A1%E6%81%AF%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310000%25%E5%9B%BD%E7%BD%91%E6%B5%99%E6%B1%9F%E7%9C%81%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310007&rft.issn=1006-6047&rft.volume=44&rft.issue=12&rft.spage=61&rft.epage=68&rft_id=info:doi/10.16081%2Fj.epae.202411005&rft.externalDocID=dlzdhsb202412009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdlzdhsb%2Fdlzdhsb.jpg