基于多损失混合对抗函数和启发式投影算法的逼真医学图像增强方法

TP391; 早期发现新冠肺炎可以及时医疗干预提高患者的存活率,而利用深度神经网络(Deep neural networks,DNN)对新冠肺炎进行检测,可以提高胸部CT对其筛查的敏感性和判读速度.然而,DNN在医学领域的应用受到有限样本和不可察觉的噪声扰动的影响.本文提出了一种多损失混合对抗方法来搜索含有可能欺骗网络的有效对抗样本,将这些对抗样本添加到训练数据中,以提高网络对意外噪声扰动的稳健性和泛化能力.特别是,本文方法不仅包含了风格、原图和细节损失在内的多损失功能从而将医学对抗样本制作成逼真的样式,而且使用启发式投影算法产生具有强聚集性和干扰性的噪声.这些样本被证明具有较强的抗去噪能力和...

Full description

Saved in:
Bibliographic Details
Published in数据采集与处理 Vol. 38; no. 5; pp. 1104 - 1111
Main Authors 王见, 成楚凡, 陈芳
Format Journal Article
LanguageChinese
Published 南京航空航天大学计算机科学与技术学院,南京 211106 01.09.2023
Subjects
Online AccessGet full text
ISSN1004-9037
DOI10.16337/j.1004-9037.2023.05.009

Cover

Abstract TP391; 早期发现新冠肺炎可以及时医疗干预提高患者的存活率,而利用深度神经网络(Deep neural networks,DNN)对新冠肺炎进行检测,可以提高胸部CT对其筛查的敏感性和判读速度.然而,DNN在医学领域的应用受到有限样本和不可察觉的噪声扰动的影响.本文提出了一种多损失混合对抗方法来搜索含有可能欺骗网络的有效对抗样本,将这些对抗样本添加到训练数据中,以提高网络对意外噪声扰动的稳健性和泛化能力.特别是,本文方法不仅包含了风格、原图和细节损失在内的多损失功能从而将医学对抗样本制作成逼真的样式,而且使用启发式投影算法产生具有强聚集性和干扰性的噪声.这些样本被证明具有较强的抗去噪能力和攻击迁移性.在新冠肺炎数据集上的测试结果表明,基于该算法的对抗攻击增强后的网络诊断正确率提高了4.75%.因此,基于多损失混合和启发式投影算法的对抗攻击的增强网络能够提高模型的建模能力,并具有抗噪声扰动的能力.
AbstractList TP391; 早期发现新冠肺炎可以及时医疗干预提高患者的存活率,而利用深度神经网络(Deep neural networks,DNN)对新冠肺炎进行检测,可以提高胸部CT对其筛查的敏感性和判读速度.然而,DNN在医学领域的应用受到有限样本和不可察觉的噪声扰动的影响.本文提出了一种多损失混合对抗方法来搜索含有可能欺骗网络的有效对抗样本,将这些对抗样本添加到训练数据中,以提高网络对意外噪声扰动的稳健性和泛化能力.特别是,本文方法不仅包含了风格、原图和细节损失在内的多损失功能从而将医学对抗样本制作成逼真的样式,而且使用启发式投影算法产生具有强聚集性和干扰性的噪声.这些样本被证明具有较强的抗去噪能力和攻击迁移性.在新冠肺炎数据集上的测试结果表明,基于该算法的对抗攻击增强后的网络诊断正确率提高了4.75%.因此,基于多损失混合和启发式投影算法的对抗攻击的增强网络能够提高模型的建模能力,并具有抗噪声扰动的能力.
Author 王见
陈芳
成楚凡
AuthorAffiliation 南京航空航天大学计算机科学与技术学院,南京 211106
AuthorAffiliation_xml – name: 南京航空航天大学计算机科学与技术学院,南京 211106
Author_FL WANG Jian
CHENG Chufan
CHEN Fang
Author_FL_xml – sequence: 1
  fullname: WANG Jian
– sequence: 2
  fullname: CHENG Chufan
– sequence: 3
  fullname: CHEN Fang
Author_xml – sequence: 1
  fullname: 王见
– sequence: 2
  fullname: 成楚凡
– sequence: 3
  fullname: 陈芳
BookMark eNo9UE1LAlEUfQuDzPwPLdvMdN9780ZnGdIXCG1q00Zm5r2JBhmhIaJdUFCIpQYmWCSEtCuTFqJpv6b7pH_RRNHqcD4493IWSCqqRIqQJQomtTnPrYQmBbAMB3jOZMC4CcIEcFIk_a_Pk2wcH3iJaVs2dew02cPu-HN8jb2Ovupib6CHQ2xcYn-kq228mOrWK97UsNHHehMndV1t4XQwe2nrt9asc_51Opndd7H2js9PePeBZ3V8fMDJWN-OksAimQvccqyyf5ghu-trO4VNo7i9sVVYLRoxBe4YwpbMcpQXSMZdSwkr-Z2KvMeYVL6kvlQAPuWezAtIiB84SkgmbJeDp8DjPEOWf3uP3Shwo_1SWDk6jJKLpTj0wxO__DMGiGQK_g1EanjO
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16337/j.1004-9037.2023.05.009
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Realistic Medical Image Augmentation by Using Multi-loss Hybrid Adversarial Function and Heuristic Projection Algorithm
EndPage 1111
ExternalDocumentID sjcjycl202305009
GroupedDBID 2B.
4A8
92I
93N
ADMLS
ALMA_UNASSIGNED_HOLDINGS
PSX
TCJ
ID FETCH-LOGICAL-s1039-56d249ebfd23a4e54202158b22decd1cde00c13bd850cdecf9e5d256a30be0b33
ISSN 1004-9037
IngestDate Thu May 29 04:00:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 启发式投影法
adversarial attack
multi-loss hybrid
medical image augmentation
attack transferability
heuristic projection algorithm
攻击迁移性
医学图像增强
对抗性攻击
多损失混合
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1039-56d249ebfd23a4e54202158b22decd1cde00c13bd850cdecf9e5d256a30be0b33
PageCount 8
ParticipantIDs wanfang_journals_sjcjycl202305009
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 数据采集与处理
PublicationTitle_FL Journal of Data Acquisition & Processing
PublicationYear 2023
Publisher 南京航空航天大学计算机科学与技术学院,南京 211106
Publisher_xml – name: 南京航空航天大学计算机科学与技术学院,南京 211106
SSID ssib023646196
ssib001102757
ssib000459638
ssib001164671
ssib006568634
ssib002264227
ssib036439733
ssib057620134
ssib023167944
ssib051372606
Score 2.3873603
Snippet TP391; 早期发现新冠肺炎可以及时医疗干预提高患者的存活率,而利用深度神经网络(Deep neural networks,DNN)对新冠肺炎进行检测,可以提高胸部CT对其筛查的敏感性和判读速...
SourceID wanfang
SourceType Aggregation Database
StartPage 1104
Title 基于多损失混合对抗函数和启发式投影算法的逼真医学图像增强方法
URI https://d.wanfangdata.com.cn/periodical/sjcjycl202305009
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1004-9037
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssib006568634
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1004-9037
  databaseCode: ADMLS
  dateStart: 20180901
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620134
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1XryIouI3Cs5Jtk5mMsnMMdndUgQ9tVC8lM3HKkUq2PZgT4KCUqqtQi1UsSDFm9biobS2_jXOFv8GL773dppNrYIKIcy-eTPvze8lefOyMy-ed0WlulAq57VIFKoGHj-stXIta3B5qEimPChoI-2Nm-HQSHB9VI32HfpRWbU0PZUOZDO_3VfyP1YFGtgVd8n-g2XLToEAZbAvnMHCcP4rG7OmYmaQJTFrBnjWTaTEATNACZluYG2XkvhISSI8sBVnWlMVNDfEHDNDVRp4GkgxiiWcmAXTddcqpg71IDM-FpI6ll1zRZQGyYpY3KQOQaikqgi10gFrGlxdAQ2RUncaQv9JQvo0WBySrIQlNBwtSQRUCWaaTmhCAzShU55EVOfZFf0JB1AG5UZ4QAE61yGBpnugoW4RIVO-rUQC1GtQTbMYyn6vJkQEDQmIFSFO2MUVFhBkCGeN-CSy-opFyHINWfemoPYNwoyMGdepHciNCU5Dgy4ppDIQXSGqgKdxuPF-I5guZhFydk3nmEsMyIaaO-aunR0PjQPgF_WDSl6F2N7nYcW54aIjw7tJdva8n9SVu1xVXJnvvgvtpkW-c4oHXG4oKWvD-EDZ_QBiSPlwuelNM8rFn5Pj2fiD7C4ycUWbbw8LcMm88j7ExRr7nAPoI6LKX_Q-ZsarxDK4I1yI6qbpUIe93IcCUz5UNoHjhxNCv5drUtLUvBf7KF9GEOuX9QpVdKtU9gbqVgYiAtf-MH7aCzjRbk3crkxbh495R128eSnuPjyOe30zd054t-zK1ret53Z1ufNsxa6udzY27MJTu7bZmV2yT3Y6i5_syzm7sGbnX9jt-c7sot1Z3_241Pm8uLv8-PvD7d03K3bui_3w3r7-ah_N23dv7fZW59UmMJz0Rgabw_WhmvvISm2SVoGoMBeBKdJ2LmQLnsyBwChAp0LkRZb7WV5wnvkyzbXi8CNrm0LlECe1JE8Lnkp5yuufuDdRnMb0D1pneRqAWzBBy3Cdy7YoeFu2VbsNkJzxLjssxtxDdHLs14vh7F_wnPOO9O7S817_1P3p4gKEBlPpRbqEfgL5kM7Z
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E6%8D%9F%E5%A4%B1%E6%B7%B7%E5%90%88%E5%AF%B9%E6%8A%97%E5%87%BD%E6%95%B0%E5%92%8C%E5%90%AF%E5%8F%91%E5%BC%8F%E6%8A%95%E5%BD%B1%E7%AE%97%E6%B3%95%E7%9A%84%E9%80%BC%E7%9C%9F%E5%8C%BB%E5%AD%A6%E5%9B%BE%E5%83%8F%E5%A2%9E%E5%BC%BA%E6%96%B9%E6%B3%95&rft.jtitle=%E6%95%B0%E6%8D%AE%E9%87%87%E9%9B%86%E4%B8%8E%E5%A4%84%E7%90%86&rft.au=%E7%8E%8B%E8%A7%81&rft.au=%E6%88%90%E6%A5%9A%E5%87%A1&rft.au=%E9%99%88%E8%8A%B3&rft.date=2023-09-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+211106&rft.issn=1004-9037&rft.volume=38&rft.issue=5&rft.spage=1104&rft.epage=1111&rft_id=info:doi/10.16337%2Fj.1004-9037.2023.05.009&rft.externalDocID=sjcjycl202305009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsjcjycl%2Fsjcjycl.jpg