基于LightGBM和DNNFL的陷落柱识别方法研究与应用

P694%TD167; 为了解决不平衡地震属性数据集中陷落柱识别准确率较低的问题,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)和利用焦点损失(Focal Loss)改进深度神经网络(Deep Neural Networks,DNN)相结合的陷落柱识别方法LightGBM-DNNF.首先通过相关性分析和重要性分析进行属性优选;其次提取LightGBM叶子节点的路径作为新的特征,并与原始数据集组合成新的数据集;最后输入到DNNFL模型中进行分类训练,预测地质构造类型.引入精确率(P)、召回率(R)、F1 分数(F1-score)、曲...

Full description

Saved in:
Bibliographic Details
Published in矿业安全与环保 Vol. 51; no. 5; pp. 125 - 141
Main Authors 王怀秀, 王慧
Format Journal Article
LanguageChinese
Published 北京建筑大学 电气与信息工程学院,北京 102616 01.10.2024
Subjects
Online AccessGet full text
ISSN1008-4495
DOI10.19835/j.issn.1008-4495.20230498

Cover

Abstract P694%TD167; 为了解决不平衡地震属性数据集中陷落柱识别准确率较低的问题,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)和利用焦点损失(Focal Loss)改进深度神经网络(Deep Neural Networks,DNN)相结合的陷落柱识别方法LightGBM-DNNF.首先通过相关性分析和重要性分析进行属性优选;其次提取LightGBM叶子节点的路径作为新的特征,并与原始数据集组合成新的数据集;最后输入到DNNFL模型中进行分类训练,预测地质构造类型.引入精确率(P)、召回率(R)、F1 分数(F1-score)、曲线下面积(AUC)作为评价指标,基于 3 个矿区的数据集开展对比实验和消融实验.实验结果表明,与传统的机器学习和单一的集成学习算法相比,LightGBM-DNNFL 模型的F1-score和AUC值均在93%以上,能有效识别陷落柱,且模型泛化能力更强.
AbstractList P694%TD167; 为了解决不平衡地震属性数据集中陷落柱识别准确率较低的问题,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)和利用焦点损失(Focal Loss)改进深度神经网络(Deep Neural Networks,DNN)相结合的陷落柱识别方法LightGBM-DNNF.首先通过相关性分析和重要性分析进行属性优选;其次提取LightGBM叶子节点的路径作为新的特征,并与原始数据集组合成新的数据集;最后输入到DNNFL模型中进行分类训练,预测地质构造类型.引入精确率(P)、召回率(R)、F1 分数(F1-score)、曲线下面积(AUC)作为评价指标,基于 3 个矿区的数据集开展对比实验和消融实验.实验结果表明,与传统的机器学习和单一的集成学习算法相比,LightGBM-DNNFL 模型的F1-score和AUC值均在93%以上,能有效识别陷落柱,且模型泛化能力更强.
Abstract_FL In order to solve the problem of low recognition accuracy of collapse column in unbalanced seismic attribute datasets,a novel collapse column recognition method named"LightGBM-DNNF"was proposed,which based on the light gradient boosting machine(LightGBM)and the use of focal loss to improve deep neural networks(DNN).Firstly,attribute selection was performed through correlation and importance analysis.Then,the paths of LightGBM leaf nodes were extracted as new features,which were combined with the original dataset to form a new dataset.Finally,the new dataset was input into the DNNFL model for classification training and prediction of geological structure types.Precision(P),Recall(R),F1-score(F1-score),and area under the curve(AUC)were introduced as evaluation metrics,and comparative experiments and ablation experiments were conducted based on datasets from three mining areas.The experimental results show that compared with the traditional machine learning and single ensemble learning algorithm,the F1-score and AUC values of the LightBM-DNNFL model are both above 93%,indicating its effectiveness in recognizing collapse column and exhibiting stronger generalization ability.
Author 王慧
王怀秀
AuthorAffiliation 北京建筑大学 电气与信息工程学院,北京 102616
AuthorAffiliation_xml – name: 北京建筑大学 电气与信息工程学院,北京 102616
Author_FL WANG Hui
WANG Huaixiu
Author_FL_xml – sequence: 1
  fullname: WANG Huaixiu
– sequence: 2
  fullname: WANG Hui
Author_xml – sequence: 1
  fullname: 王怀秀
– sequence: 2
  fullname: 王慧
BookMark eNrjYmDJy89LZWBQMjTQM7S0MDbVz9LLLC7O0zM0MLDQNTGxNNUzMjAyNjCxtGBh4IQLcjDwFhdnJhkYmJmamZiamnMy2D6dv-vJrj6fzPSMEncn36eTelz8_Nx8ns9qeTlz-4sJe5_N3_hifdvTjtXPpu18tnnq8wVTnq_c9mRH39NdU55PWcHDwJqWmFOcyguluRlC3VxDnD10ffzdPZ0dfXSLDQ2MLXRTUtOMTZOMDVONU42NEw0tk9PSLFITkw0MLRKNzEyMEk1SzY3MzVJTDVOSLdNSUhKNLNKSkkxNEy3NLM1NDQ3MjbkZNCDmlifmpSXmpcdn5ZcW5QFtjM-uTCyszEgCetbEwBRooDEAPExgVQ
ClassificationCodes P694%TD167
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19835/j.issn.1008-4495.20230498
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research and application of recognition method for collapse column based on LightGBM and DNNFL
EndPage 141
ExternalDocumentID kyaqyhb202405018
GrantInformation_xml – fundername: 国家重点研发计划
  funderid: (2018YFC0807806)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1038-def35b31e3e33a19cff8eac018a2642a4e7276ee1dc9fdda28fbb55a969751073
ISSN 1008-4495
IngestDate Thu May 29 04:06:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 陷落柱识别
深度神经网络
LightGBM
collapse column recognition
imbalanced classification
Focal Loss
不平衡分类
deep neural network
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1038-def35b31e3e33a19cff8eac018a2642a4e7276ee1dc9fdda28fbb55a969751073
PageCount 17
ParticipantIDs wanfang_journals_kyaqyhb202405018
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 矿业安全与环保
PublicationTitle_FL Mining Safety & Environmental Protection
PublicationYear 2024
Publisher 北京建筑大学 电气与信息工程学院,北京 102616
Publisher_xml – name: 北京建筑大学 电气与信息工程学院,北京 102616
SSID ssib006564557
ssj0002925396
ssib036434754
ssib001105362
ssib000270141
ssib051374764
Score 2.4007144
Snippet P694%TD167; 为了解决不平衡地震属性数据集中陷落柱识别准确率较低的问题,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)和利用焦点损失(Focal...
SourceID wanfang
SourceType Aggregation Database
StartPage 125
Title 基于LightGBM和DNNFL的陷落柱识别方法研究与应用
URI https://d.wanfangdata.com.cn/periodical/kyaqyhb202405018
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1008-4495
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002925396
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA9tvXgRRcVvKjinkppkvg8ekt2sRdqeWumtTLKJFWFF2x7as4gHKSJV0Es9Kh5EBD8W_G-63fpf-N5kmg22QhWWYZiZvPfmvcy-38t8ed4NarpgzIz6NA-Fz7gpfF1K7pe65HkpRJRL3Cg8Ny9mFtmdJb40Nn63sWppfS2bzjeP3FfyP1aFMrAr7pL9B8vWRKEA8mBfSMHCkB7LxiTlRHdIEpOUYarSWYy1bydztiYiqtWen-_MklQSDdWMpJpoTRJJUkV0QJI2SYUlEWJJ3CFK4KMK8omtEiTRmEko0RzpxAHRzGaAjrCMFTDGp0CCqgrSWDVhry0ELh3XHoSB9nFKlLbsIK8apCSmcdW4Q3S9KNnVKCuaCvCHgkBhcHQToCub3zUiVq-Qq95Ey71FtHQajFu2I4nVKZBuEx1aURmywUybxGLKdTLhVjWVRmrprdBxaAUIbTc4ajyu1KesbI6Qs0ccwZt-WJSpEENX0fAbuIqEseq-0APH4k7Svd-curdeIqz2ejvAEVYnfx3yZRrAsXVmyGG65jCNF95DXKdGHrxeV_lgwzzaWMlQnQGe1DjunYikYLLxqcHNNuP63hFsBpBNG8dGCjxiaDQbTgG1MjmCnTykEIS6MBsRT6QjTu1VeLWU7nxf7MPNv_bAbpTrlaZ3r4HpFk57p1wwNhlXI-uMN7a5cta7Ndjp7_a3DkbS4OVzO4aGb5_8evNt_8XPvZ3P-5-eDp593Hv9Y-_Lq-G77eGHr7vftwb97eH2-3PeYiddaM347pIRfxXvBvC7RUl5RsOCFpSaUOdlqQCMgPIMxAqRYQUgfFEUYTfXZbdrIlVmGedGCy3Bn0l63pvoPewVF7xJ3pUaGpVFYSjg_EwFJohMHhqugYVhF73rrrvL7k9kdflPi106RpvL3snRgLniTaw9Xi-uAjRey65ZO_8Gp9-H7w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELightGBM%E5%92%8CDNNFL%E7%9A%84%E9%99%B7%E8%90%BD%E6%9F%B1%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6%E4%B8%8E%E5%BA%94%E7%94%A8&rft.jtitle=%E7%9F%BF%E4%B8%9A%E5%AE%89%E5%85%A8%E4%B8%8E%E7%8E%AF%E4%BF%9D&rft.au=%E7%8E%8B%E6%80%80%E7%A7%80&rft.au=%E7%8E%8B%E6%85%A7&rft.date=2024-10-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%BB%BA%E7%AD%91%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+102616&rft.issn=1008-4495&rft.volume=51&rft.issue=5&rft.spage=125&rft.epage=141&rft_id=info:doi/10.19835%2Fj.issn.1008-4495.20230498&rft.externalDocID=kyaqyhb202405018
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkyaqyhb%2Fkyaqyhb.jpg