基于自适应EKF结构参数识别与鲁棒性分析

TH212%TH213.3; 扩展卡尔曼滤波(extended Kalman filter,简称EKF)方法常用于结构参数识别,但存在对滤波参数敏感等局限性,需大量试错来寻找最优噪声方差参数.针对此问题,推导了基于残差的协方差匹配公式.首先,通过滑动窗口法或遗忘因子法自适应更新匹配测量噪声方差,实现了基于EKF的自适应识别结构参数;其次,以一个3层Duffing型非线性剪切框架为例来验证方法的有效性,并进行了参数鲁棒性分析.结果表明:滑动窗口法和遗忘因子法均能很好地估计测量噪声方差,识别效果和收敛速度接近;与非自适应EKF方法相比,自适应EKF方法对噪声方差的初始取值不敏感,具有很强的鲁棒性....

Full description

Saved in:
Bibliographic Details
Published in振动、测试与诊断 Vol. 44; no. 6; pp. 1082 - 1089
Main Authors 万华平, 马强, 欧一鸿, 张文杰, 周家伟, 陈伟刚
Format Journal Article
LanguageChinese
Published 浙江大学建筑设计研究院有限公司 杭州,310028%浙江大学平衡建筑研究中心 杭州,310028 01.12.2024
浙江大学平衡建筑研究中心 杭州,310028%浙江大学建筑工程学院 杭州,310058
浙江大学建筑工程学院 杭州,310058
浙江大学建筑设计研究院有限公司 杭州,310028%浙江东南网架股份有限公司 杭州,311209
Subjects
Online AccessGet full text
ISSN1004-6801
DOI10.16450/j.cnki.issn.1004-6801.2024.06.005

Cover

Abstract TH212%TH213.3; 扩展卡尔曼滤波(extended Kalman filter,简称EKF)方法常用于结构参数识别,但存在对滤波参数敏感等局限性,需大量试错来寻找最优噪声方差参数.针对此问题,推导了基于残差的协方差匹配公式.首先,通过滑动窗口法或遗忘因子法自适应更新匹配测量噪声方差,实现了基于EKF的自适应识别结构参数;其次,以一个3层Duffing型非线性剪切框架为例来验证方法的有效性,并进行了参数鲁棒性分析.结果表明:滑动窗口法和遗忘因子法均能很好地估计测量噪声方差,识别效果和收敛速度接近;与非自适应EKF方法相比,自适应EKF方法对噪声方差的初始取值不敏感,具有很强的鲁棒性.
AbstractList TH212%TH213.3; 扩展卡尔曼滤波(extended Kalman filter,简称EKF)方法常用于结构参数识别,但存在对滤波参数敏感等局限性,需大量试错来寻找最优噪声方差参数.针对此问题,推导了基于残差的协方差匹配公式.首先,通过滑动窗口法或遗忘因子法自适应更新匹配测量噪声方差,实现了基于EKF的自适应识别结构参数;其次,以一个3层Duffing型非线性剪切框架为例来验证方法的有效性,并进行了参数鲁棒性分析.结果表明:滑动窗口法和遗忘因子法均能很好地估计测量噪声方差,识别效果和收敛速度接近;与非自适应EKF方法相比,自适应EKF方法对噪声方差的初始取值不敏感,具有很强的鲁棒性.
Abstract_FL The extended Kalman filter(EKF)method is commonly used for structural parameter identification.The EKF has limitations such as sensitivity to filtering parameters,and requires the trial and error method to find the optimal noise variance parameter.In this paper,a residual-based covariance matching formula is de-rived,and the covariance matrix of measurement noise can be adaptively updated by either the sliding window method or the forgetting factor method,and the adaptive identification of structural parameters based on the ex-tended Kalman filter is realized.A three-storey Duffing-type nonlinear shearing frame is taken to verify the effec-tiveness of the method,and the parameter robustness analysis is carried out.The results show that both the slid-ing window method and the forgetting factor method can estimate the measurement noise variance well,and the recognition effect and convergence speed are close;Compared to the non-adaptive EKF method,the adaptive EKF method is insensitive to the initial value of the noise variance and has strong robustness.
Author 张文杰
周家伟
欧一鸿
万华平
马强
陈伟刚
AuthorAffiliation 浙江大学建筑工程学院 杭州,310058;浙江大学平衡建筑研究中心 杭州,310028%浙江大学建筑工程学院 杭州,310058;浙江大学建筑设计研究院有限公司 杭州,310028%浙江大学平衡建筑研究中心 杭州,310028;浙江大学建筑设计研究院有限公司 杭州,310028%浙江东南网架股份有限公司 杭州,311209
AuthorAffiliation_xml – name: 浙江大学建筑工程学院 杭州,310058;浙江大学平衡建筑研究中心 杭州,310028%浙江大学建筑工程学院 杭州,310058;浙江大学建筑设计研究院有限公司 杭州,310028%浙江大学平衡建筑研究中心 杭州,310028;浙江大学建筑设计研究院有限公司 杭州,310028%浙江东南网架股份有限公司 杭州,311209
Author_FL ZHOU Jiawei
WAN Huaping
ZHANG Wenjie
OU Yihong
MA Qiang
CHEN Weigang
Author_FL_xml – sequence: 1
  fullname: WAN Huaping
– sequence: 2
  fullname: MA Qiang
– sequence: 3
  fullname: OU Yihong
– sequence: 4
  fullname: ZHANG Wenjie
– sequence: 5
  fullname: ZHOU Jiawei
– sequence: 6
  fullname: CHEN Weigang
Author_xml – sequence: 1
  fullname: 万华平
– sequence: 2
  fullname: 马强
– sequence: 3
  fullname: 欧一鸿
– sequence: 4
  fullname: 张文杰
– sequence: 5
  fullname: 周家伟
– sequence: 6
  fullname: 陈伟刚
BookMark eNo9j7tKA0EYRqeIYIx5DxF2_Gf-2UmmlJCoGLDROszsRTbKBBxETBWDxFSJeGljYSFooVjJ-jrZNXkLI4rVgVOcj2-FFGzHRoSsM6BMCh822jSwRwlNnLOUAQhPVoFRDlxQkBTAL5Div18mZecSs7DIFCpeJDJ7SKfpaHb1PO_1s_Suvtv4-rzNJ5fZuJ_fv81eB9nwZfoxmr9f5I83ee8pGw7yyfUqWYr1sYvKfyyRg0Z9v7btNfe2dmqbTc8xQOmFsRYQIQbKRFUhTYyiYioyVsgh9EP0RSi14ULJSBkfDcdIoajGhmnkigVYImu_3TNtY20PW-3O6YldLLa6YeDOu-HPUZAAEr8BMTxfhw
ClassificationCodes TH212%TH213.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16450/j.cnki.issn.1004-6801.2024.06.005
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Adaptive Extended Kalman Filter-Based Structural Parameter Identification and Robustness Analysis
EndPage 1089
ExternalDocumentID zdcsyzd202406006
GrantInformation_xml – fundername: (国家重点研发计划); (浙江省重点研发计划资助项目); (国家自然科学基金)
  funderid: (国家重点研发计划); (浙江省重点研发计划资助项目); (国家自然科学基金)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CCEZO
CEKLB
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1036-dfa40e33c9be846bf347b76f9320d5d354d6ab2496e9b53b23e9348fb1a3291c3
ISSN 1004-6801
IngestDate Thu May 29 04:11:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords structural parameter identification
遗忘因子法
结构参数识别
滑动窗口法
robustness
自适应扩展卡尔曼滤波
adaptive extended Kalman filter
sliding window method
forgetting factor method
鲁棒性
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1036-dfa40e33c9be846bf347b76f9320d5d354d6ab2496e9b53b23e9348fb1a3291c3
PageCount 8
ParticipantIDs wanfang_journals_zdcsyzd202406006
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 振动、测试与诊断
PublicationTitle_FL Journal of Vibration,Measurement & Diagnosis
PublicationYear 2024
Publisher 浙江大学建筑设计研究院有限公司 杭州,310028%浙江大学平衡建筑研究中心 杭州,310028
浙江大学平衡建筑研究中心 杭州,310028%浙江大学建筑工程学院 杭州,310058
浙江大学建筑工程学院 杭州,310058
浙江大学建筑设计研究院有限公司 杭州,310028%浙江东南网架股份有限公司 杭州,311209
Publisher_xml – name: 浙江大学建筑工程学院 杭州,310058
– name: 浙江大学建筑设计研究院有限公司 杭州,310028%浙江大学平衡建筑研究中心 杭州,310028
– name: 浙江大学建筑设计研究院有限公司 杭州,310028%浙江东南网架股份有限公司 杭州,311209
– name: 浙江大学平衡建筑研究中心 杭州,310028%浙江大学建筑工程学院 杭州,310058
SSID ssib005319392
ssib023168178
ssib036436293
ssj0040362
ssib001129465
ssib051372451
ssib007286666
ssib001051226
ssib003154303
Score 2.4406705
Snippet TH212%TH213.3; 扩展卡尔曼滤波(extended Kalman filter,简称EKF)方法常用于结构参数识别,但存在对滤波参数敏感等局限性,需大量试错来寻找最优噪声方差参数.针对此问题,推...
SourceID wanfang
SourceType Aggregation Database
StartPage 1082
Title 基于自适应EKF结构参数识别与鲁棒性分析
URI https://d.wanfangdata.com.cn/periodical/zdcsyzd202406006
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1004-6801
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0040362
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9KBdGD-InfVDAXZWsmyWSSY2Y6S1Hw1EJvZT5VhBVse3BPtUjtqYof13rwIOhB8STrv9Nd2__ClzfpztAWrcIyZF_evI_8lryX7JuM590sU10KXgUdiPWsI3IadlJWlZ2wYgHP_BwiChbI3pez8-LuQrAwMalaVUsry9l03j_0uZL_QRVogKt9SvYfkB0LBQK0AV-4AsJwPRLGJAmI7pLIkETYq0pIoggs7w1QtC1iUMzyQJcWyb0uSUISRURzkkiiE6KE7VVdZAMKcFIrwQBFYhe0IxSuULgmEYPc0zIbTjTeBVpM6JjtXSi5fjnnXtaLbLEVa9kMMYokHM1DUREQI6cXbGjU1ZYYlAkax8XJeyy12hnkBdvBOt6waGLgE2NPTJr9CDQ-RptrKRT9UiTqNix4j6FOs1UEjRkYnvYuCRP7Kk6cM1pjw7fYgCQj3ACZGWJwWAEDi1loKdpHPxMSJa5hfOyigBk2wDhpTQSxpsYpJko7iqY4BoHzFLCM1G1nLUi3ykILCIvtfyxMERYc2Uo7nmiTjzYdtPuglTiiTi9Ax_9kSise2jolqdxIuoBZH9jpJoZ29PNp_SIpl0nBV31olJYioBim897jR6hoeqxo2qKHR-rSoMlRxpWj_SJfetYvLBOVeNb-MQbxnLY2U-qNDkhkWftgRKZF6_98DisH3qo_sJGIt-oLQqZka2HP7Ovd_ObgOw55vGwlyoHPQyaCcXGZsHkh1lk4r457t_Ycv_NXt_H5wV6V9h60Ut25094pt0adMvWEc8ab6D88651snVx6zpPDD4PtwebOy8-7q2vDwTuYXH79fDvaejF8tTZ6_23n6_pw48v2j83d789HH9-MVj8NN9ZHW6_Pe_PdZC6e7bhXsHSWfHtUeVGlgpac5zorYaWSVVyEWSgrWPXRIih4IAqZZkxoWeoMJnfGS82FqjI_5Uz7Ob_gTfae9MqL3lTIKl0UjAtWVKJiGThdpkrlNA9CyDvoJe-G83rRTbFLi_vRvnwEniveiWYCuOpNLj9dKa_BwmE5u46_kd-kUsRL
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%87%AA%E9%80%82%E5%BA%94EKF%E7%BB%93%E6%9E%84%E5%8F%82%E6%95%B0%E8%AF%86%E5%88%AB%E4%B8%8E%E9%B2%81%E6%A3%92%E6%80%A7%E5%88%86%E6%9E%90&rft.jtitle=%E6%8C%AF%E5%8A%A8%E3%80%81%E6%B5%8B%E8%AF%95%E4%B8%8E%E8%AF%8A%E6%96%AD&rft.au=%E4%B8%87%E5%8D%8E%E5%B9%B3&rft.au=%E9%A9%AC%E5%BC%BA&rft.au=%E6%AC%A7%E4%B8%80%E9%B8%BF&rft.au=%E5%BC%A0%E6%96%87%E6%9D%B0&rft.date=2024-12-01&rft.pub=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%BB%BA%E7%AD%91%E8%AE%BE%E8%AE%A1%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8+%E6%9D%AD%E5%B7%9E%2C310028%25%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%B9%B3%E8%A1%A1%E5%BB%BA%E7%AD%91%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83+%E6%9D%AD%E5%B7%9E%2C310028&rft.issn=1004-6801&rft.volume=44&rft.issue=6&rft.spage=1082&rft.epage=1089&rft_id=info:doi/10.16450%2Fj.cnki.issn.1004-6801.2024.06.005&rft.externalDocID=zdcsyzd202406006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdcsyzd%2Fzdcsyzd.jpg