结合多通道MTF和CNN的框架结构损伤识别方法

TU312.3%TH825; 为提高复杂框架结构损伤识别的准确率,提出了一种基于多通道马尔可夫变迁场(multi-channel Markov transition field,简称MCMTF)和卷积神经网络(convolutional neural network,简称CNN)的框架结构损伤识别方法.首先,采用MCMTF理论将原始一维振动信号转换为二维图像,实现数据升维和多通道数据融合;其次,以MCMTF转换后的图像数据集作为输入训练CNN模型;最后,经调参优化自动提取损伤敏感特征,并实现损伤识别.将该方法应用于IASC-ASCE Benchmark框架结构数值模型及3层钢框架结构模型试验,...

Full description

Saved in:
Bibliographic Details
Published in振动、测试与诊断 Vol. 44; no. 2; pp. 217 - 224
Main Authors 梁韬, 叶涛萍, 李守文, 方佳畅, 黄天立
Format Journal Article
LanguageChinese
Published 中南大学土木工程学院 长沙,410075%中建二局第一建筑工程有限公司 北京,100023 01.04.2024
Subjects
Online AccessGet full text
ISSN1004-6801
DOI10.16450/j.cnki.issn.1004-6801.2024.02.002

Cover

Abstract TU312.3%TH825; 为提高复杂框架结构损伤识别的准确率,提出了一种基于多通道马尔可夫变迁场(multi-channel Markov transition field,简称MCMTF)和卷积神经网络(convolutional neural network,简称CNN)的框架结构损伤识别方法.首先,采用MCMTF理论将原始一维振动信号转换为二维图像,实现数据升维和多通道数据融合;其次,以MCMTF转换后的图像数据集作为输入训练CNN模型;最后,经调参优化自动提取损伤敏感特征,并实现损伤识别.将该方法应用于IASC-ASCE Benchmark框架结构数值模型及3层钢框架结构模型试验,对比研究了多通道MTF、单通道MTF和原始数据矩阵3种数据输入方式,CNN、长短时记忆(long short term memory,简称LSTM)神经网络和深度神经网络(deep neural network,简称DNN)3种网络模型,以及噪声对框架结构损伤识别准确率的影响.结果表明:MCMTF与CNN结合方法的损伤识别准确率最优且具有良好的鲁棒性,其对Benchmark框架数值模型模拟损伤的识别准确率可达94.4%,对3层钢框架试验模型实际损伤的识别准确率可达98.4%.
AbstractList TU312.3%TH825; 为提高复杂框架结构损伤识别的准确率,提出了一种基于多通道马尔可夫变迁场(multi-channel Markov transition field,简称MCMTF)和卷积神经网络(convolutional neural network,简称CNN)的框架结构损伤识别方法.首先,采用MCMTF理论将原始一维振动信号转换为二维图像,实现数据升维和多通道数据融合;其次,以MCMTF转换后的图像数据集作为输入训练CNN模型;最后,经调参优化自动提取损伤敏感特征,并实现损伤识别.将该方法应用于IASC-ASCE Benchmark框架结构数值模型及3层钢框架结构模型试验,对比研究了多通道MTF、单通道MTF和原始数据矩阵3种数据输入方式,CNN、长短时记忆(long short term memory,简称LSTM)神经网络和深度神经网络(deep neural network,简称DNN)3种网络模型,以及噪声对框架结构损伤识别准确率的影响.结果表明:MCMTF与CNN结合方法的损伤识别准确率最优且具有良好的鲁棒性,其对Benchmark框架数值模型模拟损伤的识别准确率可达94.4%,对3层钢框架试验模型实际损伤的识别准确率可达98.4%.
Abstract_FL To improve the accuracy of damage identification on complicated frame structures,a damage identifi-cation method based on multi-channel Markov transition field(MCMTF)and convolutional neural network(CNN)is proposed.First,MCMTF is adopted to transform the original one-dimensional vibration signals into two-dimensional images,which can realize the data dimension elevation and multi-channel data fusion.Then,the image datasets transformed by MCMTF are used as the input to train the CNN models.Finally,the sensi-tive damage features are automatically extracted after parameter tuning and optimization to identify the damage patterns.This method is applied to the IASC-ASCE Benchmark model and an experimental three-layer steel frame structure.The influence of three different data input modes including multi-channel MTF,single-channel MTF and original data matrix are investigated.Further,three different models including CNN,long short-term memory(LSTM)neural network and deep neural network(DNN)are compared,and the different noise levels on damage identification performance are obtained.The results show that the proposed method combing MCMTF with CNN has advantages in the accuracy of damage identification and good robustness.The damage identification accuracy of the method is 94.4%for the numerical Benchmark model and 98.4%for the laboratory three-layer steel frame structure,respectively.
Author 叶涛萍
黄天立
李守文
方佳畅
梁韬
AuthorAffiliation 中南大学土木工程学院 长沙,410075%中建二局第一建筑工程有限公司 北京,100023
AuthorAffiliation_xml – name: 中南大学土木工程学院 长沙,410075%中建二局第一建筑工程有限公司 北京,100023
Author_FL LIANG Tao
YE Taoping
LI Shouwen
HUANG Tianli
FANG Jiachang
Author_FL_xml – sequence: 1
  fullname: LIANG Tao
– sequence: 2
  fullname: YE Taoping
– sequence: 3
  fullname: LI Shouwen
– sequence: 4
  fullname: FANG Jiachang
– sequence: 5
  fullname: HUANG Tianli
Author_xml – sequence: 1
  fullname: 梁韬
– sequence: 2
  fullname: 叶涛萍
– sequence: 3
  fullname: 李守文
– sequence: 4
  fullname: 方佳畅
– sequence: 5
  fullname: 黄天立
BookMark eNo9j71KA0EUhaeIYIx5DxF2vHd29q-UxagQYxPrMLuzIxtlAg4iplIIIYWCGLRIERHSWVgIgujjuBPzFq4oVgcOh-_wrZCK7umMkHUEij73YKNLU32U09wYTRGAO34ISBkwToFRAFYh1f9-mdSNyRMAz8XIjViVRPP3cXEzKmaTxcVkcTneazeK26u41ZpPBvZxaKev5cBOB_b64fNj9vU8LEZP9v7NvtytkiUljk1W_8saOWhsteMdp7m_vRtvNh2D4HJHyQABhWJuAJJnSiWIocx8HqqUKd_zUwYKUbAAUEWpFyUpEzL0gkwyDFTo1sjaL_dMaCX0YafbOz3R5WOnL1Nz3pc_rsBKRfcbTKVg5w
ClassificationCodes TU312.3%TH825
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16450/j.cnki.issn.1004-6801.2024.02.002
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Damage Identification Method Using Multi-channel Markov Transition Field and Convolutional Neural Network for Frame Structures
EndPage 224
ExternalDocumentID zdcsyzd202402004
GrantInformation_xml – fundername: (国家自然科学基金); (中国建筑第二工程局有限公司青年课题资助项目)
  funderid: (国家自然科学基金); (中国建筑第二工程局有限公司青年课题资助项目)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CCEZO
CEKLB
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1034-fd7101af2370d4effb118de648fc2f656c20f11a2701f9c59bc2ad857ed217f83
ISSN 1004-6801
IngestDate Thu May 29 04:11:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords data fusion
多通道马尔可夫变迁场
卷积神经网络
convolutional neural network
振动响应
数据升维
vibration response
multi-channel Markov transition field
数据融合
损伤识别
damage identification
data dimension elevation
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1034-fd7101af2370d4effb118de648fc2f656c20f11a2701f9c59bc2ad857ed217f83
PageCount 8
ParticipantIDs wanfang_journals_zdcsyzd202402004
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 振动、测试与诊断
PublicationTitle_FL Journal of Vibration,Measurement & Diagnosis
PublicationYear 2024
Publisher 中南大学土木工程学院 长沙,410075%中建二局第一建筑工程有限公司 北京,100023
Publisher_xml – name: 中南大学土木工程学院 长沙,410075%中建二局第一建筑工程有限公司 北京,100023
SSID ssib005319392
ssib023168178
ssib036436293
ssj0040362
ssib001129465
ssib051372451
ssib007286666
ssib001051226
ssib003154303
Score 2.4185946
Snippet TU312.3%TH825; 为提高复杂框架结构损伤识别的准确率,提出了一种基于多通道马尔可夫变迁场(multi-channel Markov transition field,简称MCMTF)和卷积神经网...
SourceID wanfang
SourceType Aggregation Database
StartPage 217
Title 结合多通道MTF和CNN的框架结构损伤识别方法
URI https://d.wanfangdata.com.cn/periodical/zdcsyzd202402004
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  issn: 1004-6801
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0040362
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJQKogfxEz9LBedi2bozyUxmjpNsliK0pxZ6K7tJRkVYwbYH96RQSg8KYtFDDxWhNw8eBEH057hb-y987yXdnWrBKizh7eR9v-zMm-zLSxDckbkuNOz_G3kpdSPirmx0HS8a2BNbxXloSmrqM7-g5pai-8tyeWJyyqtaWl_rzub9Y58r-Z-owhjEFZ-S_YfIjpjCAMAQXzhChOF4ohizLGZJwkzIMslMk2mNgI2YsSwzVMRQARxw5hfbhCaYTtOFBaSFszpimWKWM60QMBlLlMeWRioc3WIGOEQsSVFEppltE5VEuTYhZMUSg0ASsuqtloeJL3FIkQTxLbOgaogagm6ID4NJzdNIkqKZzg6l2Jr5uHkkaS2I2qBe4xaSJKBNZig8GuKL3jlCbFrEH9yVkd-I_3hV9qwBXVpoEDoMWEv_Ronw62vw0q5Vty1SA1wW1yGxFdBillxmUvKmQsBS2JKYWYlC4Cv6YoQM9hmwdYYgwCOyROCoSCOsP5FMyCOCIXqJpRGLXscRjs5G7il-agc3PeQYaQ0_ThXSUptaFUNUWhKfytd6hqCUzCWpcE6knBodeese1iMpXburXhirxpz1BCCOrHKxlzCJ6iH4P9ZiFckmLcZ57_EjEjM7EjOLAaqa5YpxJjKqD-0X-eqzfoFITUHtfk-JWCnh3TKpbmdAuir89ofCRN6_9iHsD0KvygDXm9CrIoiFVt72XeBL3Pi4vV0I2bry0mHJw1hEclRCFmH2R9UUtVWng7uHht_7q9n0lGDPdXoPvIR28Xxwrt6JTttqWrkQTPQfXgzOev1JLwVm_9v24PXWYG_n4PnOwYttmEIGb17C5LG_szH8sDnc_QIIw92N4av3P77v_fy0Odj6OHz3dfj57eVgqZ0tpnON-l0rjVXeDKOGK2CrwTtOhHGziErnupzrolSRdrlwsOnLRdNx3hFxkzuTS9PNRafQMi4LuBqcDq8Ek70nvfJqMC2cjl2py0gbGXWEMoobx-NCKydj4H4tuF0bvlLPpasrvwf8-glwbgRnxj_zm8Hk2tP18hbsENa6U3SZ_ALsacAg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BB%93%E5%90%88%E5%A4%9A%E9%80%9A%E9%81%93MTF%E5%92%8CCNN%E7%9A%84%E6%A1%86%E6%9E%B6%E7%BB%93%E6%9E%84%E6%8D%9F%E4%BC%A4%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E6%8C%AF%E5%8A%A8%E3%80%81%E6%B5%8B%E8%AF%95%E4%B8%8E%E8%AF%8A%E6%96%AD&rft.au=%E6%A2%81%E9%9F%AC&rft.au=%E5%8F%B6%E6%B6%9B%E8%90%8D&rft.au=%E6%9D%8E%E5%AE%88%E6%96%87&rft.au=%E6%96%B9%E4%BD%B3%E7%95%85&rft.date=2024-04-01&rft.pub=%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%9C%9F%E6%9C%A8%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E9%95%BF%E6%B2%99%2C410075%25%E4%B8%AD%E5%BB%BA%E4%BA%8C%E5%B1%80%E7%AC%AC%E4%B8%80%E5%BB%BA%E7%AD%91%E5%B7%A5%E7%A8%8B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8+%E5%8C%97%E4%BA%AC%2C100023&rft.issn=1004-6801&rft.volume=44&rft.issue=2&rft.spage=217&rft.epage=224&rft_id=info:doi/10.16450%2Fj.cnki.issn.1004-6801.2024.02.002&rft.externalDocID=zdcsyzd202402004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdcsyzd%2Fzdcsyzd.jpg