基于阻抗偏差最小判据和改进自适应蝙蝠算法的系统侧谐波阻抗估计方法
TM711; 针对已有的系统侧谐波阻抗估计方法对背景谐波波动敏感的问题,提出了一种新的系统侧谐波阻抗估计方法.根据阻抗偏差最小判据和改进自适应蝙蝠算法寻优得到最优系统侧谐波阻抗初值,以得到与真实值相近的背景谐波电压估计值.对背景谐波电压估计值进行K-means聚类分析,并依据聚类结果将谐波样本数据分成多簇,使得每簇数据对应的背景谐波波动减少.考虑到谐波数据均为复数相量,采用复最小二乘法分别求取各簇数据的系统侧谐波阻抗估计值,并将其均值作为最终估计值.与已有的方法相比,所提方法更能适应背景谐波波动的变化,且在用户侧谐波阻抗非远大于系统侧谐波阻抗的场景下具有更好的估计精度.多个算例分析结果验证了所...
Saved in:
Published in | 电力自动化设备 Vol. 42; no. 11; pp. 183 - 189 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
上海电力大学 电气工程学院,上海 200090%国网上海市电力公司青浦供电公司,上海 201700
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1006-6047 |
DOI | 10.16081/j.epae.202205004 |
Cover
Abstract | TM711; 针对已有的系统侧谐波阻抗估计方法对背景谐波波动敏感的问题,提出了一种新的系统侧谐波阻抗估计方法.根据阻抗偏差最小判据和改进自适应蝙蝠算法寻优得到最优系统侧谐波阻抗初值,以得到与真实值相近的背景谐波电压估计值.对背景谐波电压估计值进行K-means聚类分析,并依据聚类结果将谐波样本数据分成多簇,使得每簇数据对应的背景谐波波动减少.考虑到谐波数据均为复数相量,采用复最小二乘法分别求取各簇数据的系统侧谐波阻抗估计值,并将其均值作为最终估计值.与已有的方法相比,所提方法更能适应背景谐波波动的变化,且在用户侧谐波阻抗非远大于系统侧谐波阻抗的场景下具有更好的估计精度.多个算例分析结果验证了所提方法的有效性和适用性. |
---|---|
AbstractList | TM711; 针对已有的系统侧谐波阻抗估计方法对背景谐波波动敏感的问题,提出了一种新的系统侧谐波阻抗估计方法.根据阻抗偏差最小判据和改进自适应蝙蝠算法寻优得到最优系统侧谐波阻抗初值,以得到与真实值相近的背景谐波电压估计值.对背景谐波电压估计值进行K-means聚类分析,并依据聚类结果将谐波样本数据分成多簇,使得每簇数据对应的背景谐波波动减少.考虑到谐波数据均为复数相量,采用复最小二乘法分别求取各簇数据的系统侧谐波阻抗估计值,并将其均值作为最终估计值.与已有的方法相比,所提方法更能适应背景谐波波动的变化,且在用户侧谐波阻抗非远大于系统侧谐波阻抗的场景下具有更好的估计精度.多个算例分析结果验证了所提方法的有效性和适用性. |
Author | 程卫健 刘持涛 李东东 许亮峰 符杨 林顺富 |
AuthorAffiliation | 上海电力大学 电气工程学院,上海 200090%国网上海市电力公司青浦供电公司,上海 201700 |
AuthorAffiliation_xml | – name: 上海电力大学 电气工程学院,上海 200090%国网上海市电力公司青浦供电公司,上海 201700 |
Author_FL | LIN Shunfu LIU Chitao LI Dongdong XU Liangfeng FU Yang CHENG Weijian |
Author_FL_xml | – sequence: 1 fullname: CHENG Weijian – sequence: 2 fullname: LIN Shunfu – sequence: 3 fullname: XU Liangfeng – sequence: 4 fullname: LIU Chitao – sequence: 5 fullname: LI Dongdong – sequence: 6 fullname: FU Yang |
Author_xml | – sequence: 1 fullname: 程卫健 – sequence: 2 fullname: 林顺富 – sequence: 3 fullname: 许亮峰 – sequence: 4 fullname: 刘持涛 – sequence: 5 fullname: 李东东 – sequence: 6 fullname: 符杨 |
BookMark | eNotkMtKAlEch8_CIDMfoDdoM3YuM3OOy5BuILSptf3nzJlKZIyGCFpZBEVURlh2EyuCoMUgzCLUqJdxLr5Fhq2-zY_vB98USrlVVyE0Q3COmFiQuXJO7YDKUUwpNjDWUyhNMDY1E-t8EmU9b9vCBmFcN4hIo42w3Rv0Lod3_eisGR7Ww08_eqqFnXp4-hZd-OH1edToJj-PycnHsHYU9hpJ6z5pPcd-Mwpu4ofjOOjH_fbg-z3pXEXB69gz-Ook_kt02x1tptGEAxVPZf-ZQeuLC2uFZa24urRSmC9qHsFM15TMm8KiDLg0IQ-O40hhONwxALAQllIWcAq6oSSVNheWTW3gtm6BBMYkSJZBs2PvPrgOuJulcnVv1x09luzKgb3lWX9BCMFUZ79Idn4k |
ClassificationCodes | TM711 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16081/j.epae.202205004 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | System-side harmonic impedance estimation method based on minimum impedance deviation criterion and improved adaptive bat algorithm |
EndPage | 189 |
ExternalDocumentID | dlzdhsb202211024 |
GrantInformation_xml | – fundername: (国家自然科学基金); (上海市科学技术委员会资助项目); 上海市教育发展基金; (上海市教育委员会曙光计划资助项目) funderid: (国家自然科学基金); (上海市科学技术委员会资助项目); 上海市教育发展基金; (上海市教育委员会曙光计划资助项目) |
GroupedDBID | 2B. 4A8 92I 93N ADMLS ALMA_UNASSIGNED_HOLDINGS PSX TCJ |
ID | FETCH-LOGICAL-s1034-ec968b23a7c6a9afffc85f7f5aa088beeba72a45ec2cd78bd2da7d4baca33cac3 |
ISSN | 1006-6047 |
IngestDate | Thu May 29 03:54:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | 阻抗偏差最小判据 背景谐波 改进自适应蝙蝠算法 聚类算法 系统侧谐波阻抗 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1034-ec968b23a7c6a9afffc85f7f5aa088beeba72a45ec2cd78bd2da7d4baca33cac3 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_dlzdhsb202211024 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 电力自动化设备 |
PublicationTitle_FL | Electric Power Automation Equipment |
PublicationYear | 2022 |
Publisher | 上海电力大学 电气工程学院,上海 200090%国网上海市电力公司青浦供电公司,上海 201700 |
Publisher_xml | – name: 上海电力大学 电气工程学院,上海 200090%国网上海市电力公司青浦供电公司,上海 201700 |
SSID | ssib051374518 ssib006563412 ssib023167001 ssib000271330 ssib001129761 ssib036435470 ssib057620044 |
Score | 2.403751 |
Snippet | TM711; 针对已有的系统侧谐波阻抗估计方法对背景谐波波动敏感的问题,提出了一种新的系统侧谐波阻抗估计方法.根据阻抗偏差最小判据和改进自适应蝙蝠算法寻优得到最优系统侧... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 183 |
Title | 基于阻抗偏差最小判据和改进自适应蝙蝠算法的系统侧谐波阻抗估计方法 |
URI | https://d.wanfangdata.com.cn/periodical/dlzdhsb202211024 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1006-6047 databaseCode: ADMLS dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620044 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB7i5uJFFBXfRLBPsjqPnpnuY8_uLEGMFxPILfY8Vg-ygkkuOUURFFEjEo2vEBVBUFgCOUgS0T-TfeRfWFUzcWeTFaKXobfn66r6unqnq2f6YRgX6m6qXZ6Y5Tr-m7ip07KEZDkVXCZOLERCe-mNXfNGJ_iVSXdyqPStMGtpdia6FM8NXFfyP16FPPArrpL9B8_-EQoZkAb_whU8DNd9-ZiFLpM1FigWcryKkIWSScGCgIUeE4pJHzHCYqKGicBnKsRbsoJTHDDHzG8JwRSnUlXCgGSbiQqBQbhkIYitMRlgQoAchbpAiLBJjkIY3JJVJmWeUKCCNKIZHgscJl3MkWAqxwTkoKk-XoEIsgiZ8kkXzsDISyl7EC8AVxAGYFChLDLVI1NzXcXIm_RCEZfIqn4ilKMEJSooJJMZUD1AtfR6ayIE5QLCAsUgr2Dl9iBgR8ZZolkBKVA1EN2DZPJF7riswrE2zB6EfAKkkXEFVSAtEB0U39TAIN_qe1NDEgXyQTi5fABzYqWocSgg4V0sgDyqe77TXtw-yoQmb0h0i13Zqw93qTTBdzYpBG1BlVwMDcMaZJ1LOfZgMwWorFCiRtUlqYHZeXE0hdqMDPqL95f6i5W4aWShU8a3Xp6Z7cy602tzu_h0sgp9sJWdjJSHc1Z2QtWeSMGDWJhCBYDhdrm44NzMTsLetQF7cnsuuTUdIQRiZZsfMIZt3-N-yRhW1bGr14sf8S2n-JEaYmm_sGwchk4O740mbNyEYmfWB_x2YHDg8l736VqOz91e6OhC3ILzL2j-Rl4j-TwNJHN5NxVahtio68bNQsQ8ftg4lA91R1T23DpiDM3dOmrcaK1sbG0823692X681Lq30PrebL-fb60utB59bj9ttl48aS-ud3-96z78uj1_v7Wx2F1-013-0Gkutddedt4-6KxtdjZXtn5-6a4-b699yuRs_VjtNj-2X60D5pgxUQvHK6Pl_JSX8rRlOrycxtITke1oP_a01PV6PRZu3a-7WkMEFKVppH1bczeN7TjxRZTYifYTHulYO06sY-e4UWrcaaQnjBHoXXSEa-N1GnFtcR3ZvhQ6EWmS8tSSJ43zeY1M5U_x6and3j21D8xp42Dv_33GKM3cnU3PwthkJjqXt4nfT-Pw6g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%98%BB%E6%8A%97%E5%81%8F%E5%B7%AE%E6%9C%80%E5%B0%8F%E5%88%A4%E6%8D%AE%E5%92%8C%E6%94%B9%E8%BF%9B%E8%87%AA%E9%80%82%E5%BA%94%E8%9D%99%E8%9D%A0%E7%AE%97%E6%B3%95%E7%9A%84%E7%B3%BB%E7%BB%9F%E4%BE%A7%E8%B0%90%E6%B3%A2%E9%98%BB%E6%8A%97%E4%BC%B0%E8%AE%A1%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E8%87%AA%E5%8A%A8%E5%8C%96%E8%AE%BE%E5%A4%87&rft.au=%E7%A8%8B%E5%8D%AB%E5%81%A5&rft.au=%E6%9E%97%E9%A1%BA%E5%AF%8C&rft.au=%E8%AE%B8%E4%BA%AE%E5%B3%B0&rft.au=%E5%88%98%E6%8C%81%E6%B6%9B&rft.date=2022-11-01&rft.pub=%E4%B8%8A%E6%B5%B7%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+200090%25%E5%9B%BD%E7%BD%91%E4%B8%8A%E6%B5%B7%E5%B8%82%E7%94%B5%E5%8A%9B%E5%85%AC%E5%8F%B8%E9%9D%92%E6%B5%A6%E4%BE%9B%E7%94%B5%E5%85%AC%E5%8F%B8%2C%E4%B8%8A%E6%B5%B7+201700&rft.issn=1006-6047&rft.volume=42&rft.issue=11&rft.spage=183&rft.epage=189&rft_id=info:doi/10.16081%2Fj.epae.202205004&rft.externalDocID=dlzdhsb202211024 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdlzdhsb%2Fdlzdhsb.jpg |