基于概率图模型的多机器人自组织协同围捕方法
多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑战.针对这一问题,本文提出一种基于概率图模型的自组织协同围捕方法.首先,建立围捕机器人和围捕对象的运动学模型,并给出围捕任务的数学描述.在此基础上,构建可扩展的协同围捕"感知-决策"概率图模型结构,并为模型中各节点状态设计概率分布参数估计方法;同时,将围捕任务阶段化,设计狼群狩猎行为启发的围捕策略,以提高围捕效率.最后,开展数值仿真和软件在环实验,验证了所提方法的节点可扩展性、环境适应性、系统抗风险性和模型可迁移性...
Saved in:
Published in | 控制理论与应用 Vol. 40; no. 12; pp. 2225 - 2235 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-8152 |
DOI | 10.7641/CTA.2023.30245 |
Cover
Abstract | 多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑战.针对这一问题,本文提出一种基于概率图模型的自组织协同围捕方法.首先,建立围捕机器人和围捕对象的运动学模型,并给出围捕任务的数学描述.在此基础上,构建可扩展的协同围捕"感知-决策"概率图模型结构,并为模型中各节点状态设计概率分布参数估计方法;同时,将围捕任务阶段化,设计狼群狩猎行为启发的围捕策略,以提高围捕效率.最后,开展数值仿真和软件在环实验,验证了所提方法的节点可扩展性、环境适应性、系统抗风险性和模型可迁移性. |
---|---|
AbstractList | 多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑战.针对这一问题,本文提出一种基于概率图模型的自组织协同围捕方法.首先,建立围捕机器人和围捕对象的运动学模型,并给出围捕任务的数学描述.在此基础上,构建可扩展的协同围捕"感知-决策"概率图模型结构,并为模型中各节点状态设计概率分布参数估计方法;同时,将围捕任务阶段化,设计狼群狩猎行为启发的围捕策略,以提高围捕效率.最后,开展数值仿真和软件在环实验,验证了所提方法的节点可扩展性、环境适应性、系统抗风险性和模型可迁移性. |
Abstract_FL | Multi-robot cooperative pursuit is a typical application of collective intelligence in adversarial environments.In real environments where perception is limited,environmental structure is unknown,and the target status is uncertain,multi-robot cooperative pursuit faces many challenges such as the environmental adaptability and the task scalability.To address this problem,a self-organized cooperative pursuit method based on the probabilistic graphical models is proposed.First,the kinematic models of the pursuit robots and target are established,and the mathematical description of the pursuit problem is given.On this basis,a scalable cooperative pursuit"perception-decision"probabilistic graphical model struc-ture is constructed,and a probability distribution parameter estimation method is designed for the states of each node in the model.Then,inspired by hunting behaviors of wolves,a staged pursuit strategy is designed to improve the capture effi-ciency.Finally,the numerical simulation and software-in-the-loop experiments are conducted to verify the node scalability,environmental adaptability,system risk resistance,and model transferability of the proposed method. |
Author | 闫超 黄依新 相晓嘉 周晗 孙懿豪 常远 |
AuthorAffiliation | 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091 |
AuthorAffiliation_xml | – name: 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091 |
Author_FL | CHANG Yuan SUN Yi-hao XIANG Xiao-jia HUANG Yi-xin YAN Chao ZHOU Han |
Author_FL_xml | – sequence: 1 fullname: HUANG Yi-xin – sequence: 2 fullname: XIANG Xiao-jia – sequence: 3 fullname: ZHOU Han – sequence: 4 fullname: YAN Chao – sequence: 5 fullname: CHANG Yuan – sequence: 6 fullname: SUN Yi-hao |
Author_xml | – sequence: 1 fullname: 黄依新 – sequence: 2 fullname: 相晓嘉 – sequence: 3 fullname: 周晗 – sequence: 4 fullname: 闫超 – sequence: 5 fullname: 常远 – sequence: 6 fullname: 孙懿豪 |
BookMark | eNotjz9Lw0Achm-oYK1d_Qwuife7u-SSSUrwHxS61Llc4p2oIQWDSBylkEHbulSwLYogUlx1MQU_Te_ix7Ci07s9z_OuoUrSTSRCG4Bt7jLYCtoNm2BCbYoJcyqoChhjywOHrKJ6mp6EGANgwh2oom39VCyKgXm9Lge5nnyZ2bN-vCnHPf0yNtNCP8wWRfGdv5XzXjnPdX-o72715MP0R-b-07yP1tGKEnEq6_9bQ4e7O-1g32q29g6CRtNKAVNmiciX3Fn2KBl5Ejgw5vucMBqJUDLJQwnS8aUAYFzxI0lCSkToKg9cpsAltIY2_7iXIlEiOe6cdi_Ok6Wxc3YVx1mW_R4GgoHRHyDTYnE |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7641/CTA.2023.30245 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Multi-robot self-organizing cooperative pursuit method based on probabilistic graphical model |
EndPage | 2235 |
ExternalDocumentID | kzllyyy202312014 |
GroupedDBID | -01 -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CCVFK CUBFJ CW9 PSX TCJ TGT U1G U5S UY8 |
ID | FETCH-LOGICAL-s1034-ac9e75302fec8e17144997243cabe4e7be1e59ea1147f7de2b32ab6f8164f1623 |
ISSN | 1000-8152 |
IngestDate | Thu May 29 04:08:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 概率图模型 probabilistic graphical models self-organization cooperative pursuit unknown environments 自组织 未知环境 协同围捕 multi-robot 多机器人 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1034-ac9e75302fec8e17144997243cabe4e7be1e59ea1147f7de2b32ab6f8164f1623 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_kzllyyy202312014 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 控制理论与应用 |
PublicationTitle_FL | Control Theory & Applications |
PublicationYear | 2023 |
Publisher | 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091 |
Publisher_xml | – name: 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091 |
SSID | ssib001102751 ssib002258297 ssib023646306 ssib057620041 ssib051372463 ssj0042201 ssib023167526 |
Score | 2.4313166 |
Snippet | 多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 2225 |
Title | 基于概率图模型的多机器人自组织协同围捕方法 |
URI | https://d.wanfangdata.com.cn/periodical/kzllyyy202312014 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1000-8152 databaseCode: ADMLS dateStart: 20170701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620041 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdOjHRQ_iJ35TwZzK1k0mySQnyezOUsR6sYXeysx2VsGygm0P7VEKPWirlwq2oggixate3IK_prPrwR_he8nM7LT0UL2ETPLey3t5m-Rl85LneXc7waLiqs1rGtbGGsx-opZwP6ilsGORLNCxO9GdeSSn5_iDeTE_Mvqn4rW0upJMtddPvFfyP1qFMtAr3pL9B82WRKEA8qBfSEHDkJ5KxyQSRLdIaEjEMVURiSQxkihGogA_YauPMCEJXZUihtoSqAoRRgMWxxLDMQ8wumEJAoxGeEcZSxRSMwaxwtBiuYxtQjWJalmsOlGNolGOBKFKC0tZklBjJvSJi3lZmMUWLCLGkVIklJY3ICWxXRMVMioro8BPbRmA1JTeuCTSBWscJdbNotn6ECSwnClbo4n2La9AVw9BoIBa2R1IUKWvoQ9CZAp4dGGAij9NmH_MAaXohabFAwyrFRASqKPABt1MXNc7yU0TledazXvct-glVglTZrTVE4OhYntWo7hOH8Ap1kJntWwVA8hJjv4qPmHCAknkL__thCc1U6UuULFI1MKbxiQe2rggaPmyhu8HKCqOrHvumaxifLPqKsbcZfTcIgILUpy02gaS42rbmDVT2MdTPh7jD-2K0tvz2frS0traGsJQsDf5qDfOAinZmDdumjMPHw_Nd4qH6BVzkgm8-V18M3y1QQy3Cxj7QPpDLwFB_YBVojvAVhpni9LlizNmw6GXveEecUUx7h0Vwt7g63bi7pOKsTl73juX7xInjBvyF7yR9acXvbOVt0MvefezT73D3nb_68vB9ma296u__zn7-Gqwu5F92e1_6GXv9w97vd-b3wYHG4ODzWzrTfb2dbb3o7-103_3s_9957I314pmG9O1PBpKbZnWfV6L2zoNMMZXJ22rlAaUc7z0zv12nKQ8DZKUpkKnMaU8gBk4ZYnP4kR2FJW8Q2GXc8Ub6z7vple9iSRoi1gpyesJWOhBrJIkha1HokRnsZ626TXvTi7-Qj7bLS8cV-L1U8Dc8M4MB99Nb2zlxWp6C2z4leR2rvq_0tev_Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%A6%82%E7%8E%87%E5%9B%BE%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%9A%E6%9C%BA%E5%99%A8%E4%BA%BA%E8%87%AA%E7%BB%84%E7%BB%87%E5%8D%8F%E5%90%8C%E5%9B%B4%E6%8D%95%E6%96%B9%E6%B3%95&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E9%BB%84%E4%BE%9D%E6%96%B0&rft.au=%E7%9B%B8%E6%99%93%E5%98%89&rft.au=%E5%91%A8%E6%99%97&rft.au=%E9%97%AB%E8%B6%85&rft.date=2023-12-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%99%BA%E8%83%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410073%25%E5%86%9B%E4%BA%8B%E7%A7%91%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100091&rft.issn=1000-8152&rft.volume=40&rft.issue=12&rft.spage=2225&rft.epage=2235&rft_id=info:doi/10.7641%2FCTA.2023.30245&rft.externalDocID=kzllyyy202312014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg |