基于概率图模型的多机器人自组织协同围捕方法

多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑战.针对这一问题,本文提出一种基于概率图模型的自组织协同围捕方法.首先,建立围捕机器人和围捕对象的运动学模型,并给出围捕任务的数学描述.在此基础上,构建可扩展的协同围捕"感知-决策"概率图模型结构,并为模型中各节点状态设计概率分布参数估计方法;同时,将围捕任务阶段化,设计狼群狩猎行为启发的围捕策略,以提高围捕效率.最后,开展数值仿真和软件在环实验,验证了所提方法的节点可扩展性、环境适应性、系统抗风险性和模型可迁移性...

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 40; no. 12; pp. 2225 - 2235
Main Authors 黄依新, 相晓嘉, 周晗, 闫超, 常远, 孙懿豪
Format Journal Article
LanguageChinese
Published 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091 01.12.2023
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2023.30245

Cover

Abstract 多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑战.针对这一问题,本文提出一种基于概率图模型的自组织协同围捕方法.首先,建立围捕机器人和围捕对象的运动学模型,并给出围捕任务的数学描述.在此基础上,构建可扩展的协同围捕"感知-决策"概率图模型结构,并为模型中各节点状态设计概率分布参数估计方法;同时,将围捕任务阶段化,设计狼群狩猎行为启发的围捕策略,以提高围捕效率.最后,开展数值仿真和软件在环实验,验证了所提方法的节点可扩展性、环境适应性、系统抗风险性和模型可迁移性.
AbstractList 多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑战.针对这一问题,本文提出一种基于概率图模型的自组织协同围捕方法.首先,建立围捕机器人和围捕对象的运动学模型,并给出围捕任务的数学描述.在此基础上,构建可扩展的协同围捕"感知-决策"概率图模型结构,并为模型中各节点状态设计概率分布参数估计方法;同时,将围捕任务阶段化,设计狼群狩猎行为启发的围捕策略,以提高围捕效率.最后,开展数值仿真和软件在环实验,验证了所提方法的节点可扩展性、环境适应性、系统抗风险性和模型可迁移性.
Abstract_FL Multi-robot cooperative pursuit is a typical application of collective intelligence in adversarial environments.In real environments where perception is limited,environmental structure is unknown,and the target status is uncertain,multi-robot cooperative pursuit faces many challenges such as the environmental adaptability and the task scalability.To address this problem,a self-organized cooperative pursuit method based on the probabilistic graphical models is proposed.First,the kinematic models of the pursuit robots and target are established,and the mathematical description of the pursuit problem is given.On this basis,a scalable cooperative pursuit"perception-decision"probabilistic graphical model struc-ture is constructed,and a probability distribution parameter estimation method is designed for the states of each node in the model.Then,inspired by hunting behaviors of wolves,a staged pursuit strategy is designed to improve the capture effi-ciency.Finally,the numerical simulation and software-in-the-loop experiments are conducted to verify the node scalability,environmental adaptability,system risk resistance,and model transferability of the proposed method.
Author 闫超
黄依新
相晓嘉
周晗
孙懿豪
常远
AuthorAffiliation 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091
AuthorAffiliation_xml – name: 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091
Author_FL CHANG Yuan
SUN Yi-hao
XIANG Xiao-jia
HUANG Yi-xin
YAN Chao
ZHOU Han
Author_FL_xml – sequence: 1
  fullname: HUANG Yi-xin
– sequence: 2
  fullname: XIANG Xiao-jia
– sequence: 3
  fullname: ZHOU Han
– sequence: 4
  fullname: YAN Chao
– sequence: 5
  fullname: CHANG Yuan
– sequence: 6
  fullname: SUN Yi-hao
Author_xml – sequence: 1
  fullname: 黄依新
– sequence: 2
  fullname: 相晓嘉
– sequence: 3
  fullname: 周晗
– sequence: 4
  fullname: 闫超
– sequence: 5
  fullname: 常远
– sequence: 6
  fullname: 孙懿豪
BookMark eNotjz9Lw0Achm-oYK1d_Qwuife7u-SSSUrwHxS61Llc4p2oIQWDSBylkEHbulSwLYogUlx1MQU_Te_ix7Ci07s9z_OuoUrSTSRCG4Bt7jLYCtoNm2BCbYoJcyqoChhjywOHrKJ6mp6EGANgwh2oom39VCyKgXm9Lge5nnyZ2bN-vCnHPf0yNtNCP8wWRfGdv5XzXjnPdX-o72715MP0R-b-07yP1tGKEnEq6_9bQ4e7O-1g32q29g6CRtNKAVNmiciX3Fn2KBl5Ejgw5vucMBqJUDLJQwnS8aUAYFzxI0lCSkToKg9cpsAltIY2_7iXIlEiOe6cdi_Ok6Wxc3YVx1mW_R4GgoHRHyDTYnE
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2023.30245
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Multi-robot self-organizing cooperative pursuit method based on probabilistic graphical model
EndPage 2235
ExternalDocumentID kzllyyy202312014
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1034-ac9e75302fec8e17144997243cabe4e7be1e59ea1147f7de2b32ab6f8164f1623
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 概率图模型
probabilistic graphical models
self-organization
cooperative pursuit
unknown environments
自组织
未知环境
协同围捕
multi-robot
多机器人
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1034-ac9e75302fec8e17144997243cabe4e7be1e59ea1147f7de2b32ab6f8164f1623
PageCount 11
ParticipantIDs wanfang_journals_kzllyyy202312014
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2023
Publisher 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091
Publisher_xml – name: 国防科技大学智能科学学院,湖南长沙 410073%军事科学院,北京 100091
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.4313166
Snippet 多机器人协同围捕是群体智能在对抗环境下的典型运用.在感知能力受限、环境结构未知、目标状态不确定的真实环境中,多机器人协同围捕面临环境适应性、任务可扩展性等多方面挑...
SourceID wanfang
SourceType Aggregation Database
StartPage 2225
Title 基于概率图模型的多机器人自组织协同围捕方法
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202312014
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-8152
  databaseCode: ADMLS
  dateStart: 20170701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620041
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdOjHRQ_iJ35TwZzK1k0mySQnyezOUsR6sYXeysx2VsGygm0P7VEKPWirlwq2oggixate3IK_prPrwR_he8nM7LT0UL2ETPLey3t5m-Rl85LneXc7waLiqs1rGtbGGsx-opZwP6ilsGORLNCxO9GdeSSn5_iDeTE_Mvqn4rW0upJMtddPvFfyP1qFMtAr3pL9B82WRKEA8qBfSEHDkJ5KxyQSRLdIaEjEMVURiSQxkihGogA_YauPMCEJXZUihtoSqAoRRgMWxxLDMQ8wumEJAoxGeEcZSxRSMwaxwtBiuYxtQjWJalmsOlGNolGOBKFKC0tZklBjJvSJi3lZmMUWLCLGkVIklJY3ICWxXRMVMioro8BPbRmA1JTeuCTSBWscJdbNotn6ECSwnClbo4n2La9AVw9BoIBa2R1IUKWvoQ9CZAp4dGGAij9NmH_MAaXohabFAwyrFRASqKPABt1MXNc7yU0TledazXvct-glVglTZrTVE4OhYntWo7hOH8Ap1kJntWwVA8hJjv4qPmHCAknkL__thCc1U6UuULFI1MKbxiQe2rggaPmyhu8HKCqOrHvumaxifLPqKsbcZfTcIgILUpy02gaS42rbmDVT2MdTPh7jD-2K0tvz2frS0traGsJQsDf5qDfOAinZmDdumjMPHw_Nd4qH6BVzkgm8-V18M3y1QQy3Cxj7QPpDLwFB_YBVojvAVhpni9LlizNmw6GXveEecUUx7h0Vwt7g63bi7pOKsTl73juX7xInjBvyF7yR9acXvbOVt0MvefezT73D3nb_68vB9ma296u__zn7-Gqwu5F92e1_6GXv9w97vd-b3wYHG4ODzWzrTfb2dbb3o7-103_3s_9957I314pmG9O1PBpKbZnWfV6L2zoNMMZXJ22rlAaUc7z0zv12nKQ8DZKUpkKnMaU8gBk4ZYnP4kR2FJW8Q2GXc8Ub6z7vple9iSRoi1gpyesJWOhBrJIkha1HokRnsZ626TXvTi7-Qj7bLS8cV-L1U8Dc8M4MB99Nb2zlxWp6C2z4leR2rvq_0tev_Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%A6%82%E7%8E%87%E5%9B%BE%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%9A%E6%9C%BA%E5%99%A8%E4%BA%BA%E8%87%AA%E7%BB%84%E7%BB%87%E5%8D%8F%E5%90%8C%E5%9B%B4%E6%8D%95%E6%96%B9%E6%B3%95&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E9%BB%84%E4%BE%9D%E6%96%B0&rft.au=%E7%9B%B8%E6%99%93%E5%98%89&rft.au=%E5%91%A8%E6%99%97&rft.au=%E9%97%AB%E8%B6%85&rft.date=2023-12-01&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%99%BA%E8%83%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8D%97%E9%95%BF%E6%B2%99+410073%25%E5%86%9B%E4%BA%8B%E7%A7%91%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100091&rft.issn=1000-8152&rft.volume=40&rft.issue=12&rft.spage=2225&rft.epage=2235&rft_id=info:doi/10.7641%2FCTA.2023.30245&rft.externalDocID=kzllyyy202312014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg