基于一维双重注意力网络的输送带纵向撕裂检测算法
TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法.通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证.结果表明:该算法的准确率P为92.54%,召回率R为 91.78%,每帧平均检测时间为 12.40 ms.工业性试验成功检测出输送带模...
        Saved in:
      
    
          | Published in | 矿业安全与环保 Vol. 51; no. 5; pp. 89 - 104 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            煤矿灾害防控全国重点实验室,重庆 400037
    
        01.10.2024
     中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1008-4495 | 
| DOI | 10.19835/j.issn.1008-4495.20240592 | 
Cover
| Abstract | TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法.通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证.结果表明:该算法的准确率P为92.54%,召回率R为 91.78%,每帧平均检测时间为 12.40 ms.工业性试验成功检测出输送带模拟撕裂,为输送带纵向撕裂提供了一种新的检测方案. | 
    
|---|---|
| AbstractList | TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法.通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证.结果表明:该算法的准确率P为92.54%,召回率R为 91.78%,每帧平均检测时间为 12.40 ms.工业性试验成功检测出输送带模拟撕裂,为输送带纵向撕裂提供了一种新的检测方案. | 
    
| Abstract_FL | In view of the problem that the traditional machine vision based conveyor belt tear detection algorithm requires high computing power and high power consumption AI module,and the intrinsic safety power supply can not meet its electrical needs,a longitudinal tear detection algorithm of conveyor belt based on one-dimensional dual attention network(DANet-1D)was proposed.The image of conveyor belt surface line laser was collected by industrial camera.The laser stripe feature filter was designed to extract stripe features.A tear detection algorithm based on DANet-1D was designed to reduce the dimensionality of the torn two-dimensional image data.The detection of neural network operated in one-dimensional space,run faster and supported high-resolution images.An intrinsic safe conveyor belt tear detection device was developed and verified.The results show that the accuracy P of the algorithm is 92.54%,and the recall rate R is 91.78%.The average detection time per frame is 12.40 ms.The industrial test successfully detected simulated tearing of the conveyor belt,providing a new detection scheme for longitudinal tear of the conveyor belt. | 
    
| Author | 罗明华 向兆军 游磊  | 
    
| AuthorAffiliation | 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039;煤矿灾害防控全国重点实验室,重庆 400037 | 
    
| AuthorAffiliation_xml | – name: 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039;煤矿灾害防控全国重点实验室,重庆 400037 | 
    
| Author_FL | XIANG Zhaojun YOU Lei LUO Minghua  | 
    
| Author_FL_xml | – sequence: 1 fullname: XIANG Zhaojun – sequence: 2 fullname: YOU Lei – sequence: 3 fullname: LUO Minghua  | 
    
| Author_xml | – sequence: 1 fullname: 向兆军 – sequence: 2 fullname: 游磊 – sequence: 3 fullname: 罗明华  | 
    
| BookMark | eNo9jz9Lw0Achm-oYK39Ek4uib-7yyWXUUr9AwUXncsludNWSdFDpFuUgqDVWqUIKjgUxMmlFkqKfpomab-FQsXphWd4Ht4llAsboURoBYOJXU7ZWt2saR2aGIAbluUykwCxgLkkh_L_cBEVta55ADazLcacPConr_Ekvp2Momz8mXTas8ubdPCetjrJ1XP21c3GL9lTa_r9MIvOk9FbFg-Tu25635v2L9J-lA6vs4_HdNBbRgtKHGlZ_NsC2tso75a2jMrO5nZpvWJoDJQaNvhEcQU48LELPHBt5QB2fMJwgHkgHcK5JaRUXDLs-9SRwuOcKBBEOa4EWkCrc--ZCJUI96v1xulJ-FusHjbFcfPAm58GTOkPqlZp8w | 
    
| ClassificationCodes | TD67%TP751 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.19835/j.issn.1008-4495.20240592 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| DocumentTitle_FL | Longitudinal tear detection algorithm of conveyor belt based on DANet-1D | 
    
| EndPage | 104 | 
    
| ExternalDocumentID | kyaqyhb202405013 | 
    
| GrantInformation_xml | – fundername: 中煤科工集团重庆研究院自立重点研发科研项目 funderid: (2023ZDYF01)  | 
    
| GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ  | 
    
| ID | FETCH-LOGICAL-s1033-60c2f8f01dc1908d96f7017c251d18de72884aeef8e51cc37eab882f0a2f79e03 | 
    
| ISSN | 1008-4495 | 
    
| IngestDate | Thu May 29 04:06:59 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | conveyor 线激光 line laser DANet-1D 一维双重注意力网络 深度学习 纵向撕裂 longitudinal tear machine vision deep learning 机器视觉 输送带 带式输送机 belt conveyor  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1033-60c2f8f01dc1908d96f7017c251d18de72884aeef8e51cc37eab882f0a2f79e03 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | wanfang_journals_kyaqyhb202405013 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-10-01 | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 矿业安全与环保 | 
    
| PublicationTitle_FL | Mining Safety & Environmental Protection | 
    
| PublicationYear | 2024 | 
    
| Publisher | 煤矿灾害防控全国重点实验室,重庆 400037 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039  | 
    
| Publisher_xml | – name: 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039 – name: 煤矿灾害防控全国重点实验室,重庆 400037  | 
    
| SSID | ssib006564557 ssj0002925396 ssib036434754 ssib001105362 ssib000270141 ssib051374764  | 
    
| Score | 2.3981836 | 
    
| Snippet | TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 89 | 
    
| Title | 基于一维双重注意力网络的输送带纵向撕裂检测算法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/kyaqyhb202405013 | 
    
| Volume | 51 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1008-4495 databaseCode: DOA dateStart: 20230101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002925396 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgRRcVvKpiTbJ1JMpnkONlmKYKeWuitzMzOWBFWtO2hPa1SEPyqVUpBBQ8F8eSlFkqL_jXd3fa_8L1M3Bn8gCosIWRe8r5mNr_MvOR53nXGhMpYKhpcqqTB01w0ABylDXv4VpGwIBC4G_n2HTE5zW_NhDMjxzZqUUuLC-l4tvzHfSX_41VoA7_iLtl_8OxwUGiAOvgXSvAwlEfyMTEhUS2iY2I4ltLYisTwBRMRrYnmSCNbRDaJUQRW_nKCGEE0I7HEiuR4FWliorTtNUFU4LqrJlZUjGRGEm2IYnYcHxAo9gJesbDEMdGhlce33QVRlKgQe8WMSIotWPEtd2BnecUwYOTkKbNg_gTKli-o1nIagQwwONBLZaUNrfylsgaJoYxL4hZRwzDmmkS2kxS2AtLpikTgKPBDgUDEuLpSWsNKqEpGIRpQmvrLEsqHYXfl7W3FAQF5TYkIDaaNU0JbK8KQ2hoGZY9qaoXoCuBceSxCE2rluiuDl-LYetW2AC9a93Bobwdxg9ujf2ozD8ahcO5s7aYmdxbvvfrH_xKkqBpicQmcf5sMFaBrOxsig_Ehg3E0DKBqWkGAYWDm_aXk4dJcWlL4mA36OIXp0q-9q3CfqzFAuMLdgNJZ7dxJgWcUVZ_TGcBeHlW4NQwYrGLdOh0hE1U0ZDaX3lBKd0Aw6nDzrxrYnXadIuncrYHCqVPeSbeaG4vLR_O0N7I8d8YzvY-7-7uv9ne6g72vvdUXh09f9rc-91dWe8_eD76tDfY-DN6tHHx_e9h93Nv5NNjd7r1e679ZP9h80t_s9refD75s9LfWz3rTLTPVnGy4bCWN-QATIgo_o4Us_KCdAciWbSUKMFKUwQKiHch2HlEpeZLnhczDIMtYlCcpLG8LP6FFpHKfnfNGOw86-XlvLJGsUDRlia9SjjnjRCYi2k7bPpN-nkQXvGtO7Vn3bzQ_-6vnLh6B5pJ3onpILnujC48W8yuAsRfSq9bfPwBo9Z0k | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%B8%80%E7%BB%B4%E5%8F%8C%E9%87%8D%E6%B3%A8%E6%84%8F%E5%8A%9B%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BE%93%E9%80%81%E5%B8%A6%E7%BA%B5%E5%90%91%E6%92%95%E8%A3%82%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E7%9F%BF%E4%B8%9A%E5%AE%89%E5%85%A8%E4%B8%8E%E7%8E%AF%E4%BF%9D&rft.au=%E5%90%91%E5%85%86%E5%86%9B&rft.au=%E6%B8%B8%E7%A3%8A&rft.au=%E7%BD%97%E6%98%8E%E5%8D%8E&rft.date=2024-10-01&rft.pub=%E7%85%A4%E7%9F%BF%E7%81%BE%E5%AE%B3%E9%98%B2%E6%8E%A7%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%87%8D%E5%BA%86+400037&rft.issn=1008-4495&rft.volume=51&rft.issue=5&rft.spage=89&rft.epage=104&rft_id=info:doi/10.19835%2Fj.issn.1008-4495.20240592&rft.externalDocID=kyaqyhb202405013 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkyaqyhb%2Fkyaqyhb.jpg |