基于一维双重注意力网络的输送带纵向撕裂检测算法

TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法.通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证.结果表明:该算法的准确率P为92.54%,召回率R为 91.78%,每帧平均检测时间为 12.40 ms.工业性试验成功检测出输送带模...

Full description

Saved in:
Bibliographic Details
Published in矿业安全与环保 Vol. 51; no. 5; pp. 89 - 104
Main Authors 向兆军, 游磊, 罗明华
Format Journal Article
LanguageChinese
Published 煤矿灾害防控全国重点实验室,重庆 400037 01.10.2024
中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039
Subjects
Online AccessGet full text
ISSN1008-4495
DOI10.19835/j.issn.1008-4495.20240592

Cover

Abstract TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法.通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证.结果表明:该算法的准确率P为92.54%,召回率R为 91.78%,每帧平均检测时间为 12.40 ms.工业性试验成功检测出输送带模拟撕裂,为输送带纵向撕裂提供了一种新的检测方案.
AbstractList TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法.通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证.结果表明:该算法的准确率P为92.54%,召回率R为 91.78%,每帧平均检测时间为 12.40 ms.工业性试验成功检测出输送带模拟撕裂,为输送带纵向撕裂提供了一种新的检测方案.
Abstract_FL In view of the problem that the traditional machine vision based conveyor belt tear detection algorithm requires high computing power and high power consumption AI module,and the intrinsic safety power supply can not meet its electrical needs,a longitudinal tear detection algorithm of conveyor belt based on one-dimensional dual attention network(DANet-1D)was proposed.The image of conveyor belt surface line laser was collected by industrial camera.The laser stripe feature filter was designed to extract stripe features.A tear detection algorithm based on DANet-1D was designed to reduce the dimensionality of the torn two-dimensional image data.The detection of neural network operated in one-dimensional space,run faster and supported high-resolution images.An intrinsic safe conveyor belt tear detection device was developed and verified.The results show that the accuracy P of the algorithm is 92.54%,and the recall rate R is 91.78%.The average detection time per frame is 12.40 ms.The industrial test successfully detected simulated tearing of the conveyor belt,providing a new detection scheme for longitudinal tear of the conveyor belt.
Author 罗明华
向兆军
游磊
AuthorAffiliation 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039;煤矿灾害防控全国重点实验室,重庆 400037
AuthorAffiliation_xml – name: 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039;煤矿灾害防控全国重点实验室,重庆 400037
Author_FL XIANG Zhaojun
YOU Lei
LUO Minghua
Author_FL_xml – sequence: 1
  fullname: XIANG Zhaojun
– sequence: 2
  fullname: YOU Lei
– sequence: 3
  fullname: LUO Minghua
Author_xml – sequence: 1
  fullname: 向兆军
– sequence: 2
  fullname: 游磊
– sequence: 3
  fullname: 罗明华
BookMark eNo9jz9Lw0Achm-oYK39Ek4uib-7yyWXUUr9AwUXncsludNWSdFDpFuUgqDVWqUIKjgUxMmlFkqKfpomab-FQsXphWd4Ht4llAsboURoBYOJXU7ZWt2saR2aGIAbluUykwCxgLkkh_L_cBEVta55ADazLcacPConr_Ekvp2Momz8mXTas8ubdPCetjrJ1XP21c3GL9lTa_r9MIvOk9FbFg-Tu25635v2L9J-lA6vs4_HdNBbRgtKHGlZ_NsC2tso75a2jMrO5nZpvWJoDJQaNvhEcQU48LELPHBt5QB2fMJwgHkgHcK5JaRUXDLs-9SRwuOcKBBEOa4EWkCrc--ZCJUI96v1xulJ-FusHjbFcfPAm58GTOkPqlZp8w
ClassificationCodes TD67%TP751
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19835/j.issn.1008-4495.20240592
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Longitudinal tear detection algorithm of conveyor belt based on DANet-1D
EndPage 104
ExternalDocumentID kyaqyhb202405013
GrantInformation_xml – fundername: 中煤科工集团重庆研究院自立重点研发科研项目
  funderid: (2023ZDYF01)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1033-60c2f8f01dc1908d96f7017c251d18de72884aeef8e51cc37eab882f0a2f79e03
ISSN 1008-4495
IngestDate Thu May 29 04:06:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords conveyor
线激光
line laser
DANet-1D
一维双重注意力网络
深度学习
纵向撕裂
longitudinal tear
machine vision
deep learning
机器视觉
输送带
带式输送机
belt conveyor
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1033-60c2f8f01dc1908d96f7017c251d18de72884aeef8e51cc37eab882f0a2f79e03
PageCount 16
ParticipantIDs wanfang_journals_kyaqyhb202405013
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 矿业安全与环保
PublicationTitle_FL Mining Safety & Environmental Protection
PublicationYear 2024
Publisher 煤矿灾害防控全国重点实验室,重庆 400037
中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039
Publisher_xml – name: 中煤科工集团重庆研究院有限公司,重庆 400039%中煤科工集团重庆研究院有限公司,重庆 400039
– name: 煤矿灾害防控全国重点实验室,重庆 400037
SSID ssib006564557
ssj0002925396
ssib036434754
ssib001105362
ssib000270141
ssib051374764
Score 2.3981836
Snippet TD67%TP751; 针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网...
SourceID wanfang
SourceType Aggregation Database
StartPage 89
Title 基于一维双重注意力网络的输送带纵向撕裂检测算法
URI https://d.wanfangdata.com.cn/periodical/kyaqyhb202405013
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1008-4495
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002925396
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgRRcVvKpiTbJ1JMpnkONlmKYKeWuitzMzOWBFWtO2hPa1SEPyqVUpBBQ8F8eSlFkqL_jXd3fa_8L1M3Bn8gCosIWRe8r5mNr_MvOR53nXGhMpYKhpcqqTB01w0ABylDXv4VpGwIBC4G_n2HTE5zW_NhDMjxzZqUUuLC-l4tvzHfSX_41VoA7_iLtl_8OxwUGiAOvgXSvAwlEfyMTEhUS2iY2I4ltLYisTwBRMRrYnmSCNbRDaJUQRW_nKCGEE0I7HEiuR4FWliorTtNUFU4LqrJlZUjGRGEm2IYnYcHxAo9gJesbDEMdGhlce33QVRlKgQe8WMSIotWPEtd2BnecUwYOTkKbNg_gTKli-o1nIagQwwONBLZaUNrfylsgaJoYxL4hZRwzDmmkS2kxS2AtLpikTgKPBDgUDEuLpSWsNKqEpGIRpQmvrLEsqHYXfl7W3FAQF5TYkIDaaNU0JbK8KQ2hoGZY9qaoXoCuBceSxCE2rluiuDl-LYetW2AC9a93Bobwdxg9ujf2ozD8ahcO5s7aYmdxbvvfrH_xKkqBpicQmcf5sMFaBrOxsig_Ehg3E0DKBqWkGAYWDm_aXk4dJcWlL4mA36OIXp0q-9q3CfqzFAuMLdgNJZ7dxJgWcUVZ_TGcBeHlW4NQwYrGLdOh0hE1U0ZDaX3lBKd0Aw6nDzrxrYnXadIuncrYHCqVPeSbeaG4vLR_O0N7I8d8YzvY-7-7uv9ne6g72vvdUXh09f9rc-91dWe8_eD76tDfY-DN6tHHx_e9h93Nv5NNjd7r1e679ZP9h80t_s9refD75s9LfWz3rTLTPVnGy4bCWN-QATIgo_o4Us_KCdAciWbSUKMFKUwQKiHch2HlEpeZLnhczDIMtYlCcpLG8LP6FFpHKfnfNGOw86-XlvLJGsUDRlia9SjjnjRCYi2k7bPpN-nkQXvGtO7Vn3bzQ_-6vnLh6B5pJ3onpILnujC48W8yuAsRfSq9bfPwBo9Z0k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%B8%80%E7%BB%B4%E5%8F%8C%E9%87%8D%E6%B3%A8%E6%84%8F%E5%8A%9B%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BE%93%E9%80%81%E5%B8%A6%E7%BA%B5%E5%90%91%E6%92%95%E8%A3%82%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E7%9F%BF%E4%B8%9A%E5%AE%89%E5%85%A8%E4%B8%8E%E7%8E%AF%E4%BF%9D&rft.au=%E5%90%91%E5%85%86%E5%86%9B&rft.au=%E6%B8%B8%E7%A3%8A&rft.au=%E7%BD%97%E6%98%8E%E5%8D%8E&rft.date=2024-10-01&rft.pub=%E7%85%A4%E7%9F%BF%E7%81%BE%E5%AE%B3%E9%98%B2%E6%8E%A7%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%87%8D%E5%BA%86+400037&rft.issn=1008-4495&rft.volume=51&rft.issue=5&rft.spage=89&rft.epage=104&rft_id=info:doi/10.19835%2Fj.issn.1008-4495.20240592&rft.externalDocID=kyaqyhb202405013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkyaqyhb%2Fkyaqyhb.jpg