基于PSO和MLEM混合算法的NDP测量反演算法研究

TL99; 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业.在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤.目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法.针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度.应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中6Li的NDP模拟能谱进行反演,并对反演计算结果进行了...

Full description

Saved in:
Bibliographic Details
Published in原子能科学技术 Vol. 58; no. 5; pp. 1152 - 1159
Main Authors 李远辉, 杨芮, 张庆贤, 肖才锦, 陈弘杰, 肖鸿飞, 程志强
Format Journal Article
LanguageChinese
Published 成都理工大学地学核技术四川省重点实验室,四川成都 610059 01.05.2024
中核医疗产业管理有限公司 北京 100097%核工业北京地质研究院,北京 100029%成都理工大学地学核技术四川省重点实验室,四川成都 610059%中国原子能科学研究院,北京 102413
Subjects
Online AccessGet full text
ISSN1000-6931
DOI10.7538/yzk.2023.youxian.0642

Cover

Abstract TL99; 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业.在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤.目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法.针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度.应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中6Li的NDP模拟能谱进行反演,并对反演计算结果进行了评价.结果表明:对比PSO算法,PSO-MLEM算法的收敛效率与计算精度明显提升;对比MLEM算法,PSO-MLEM算法的全局寻优能力有效提升了反演精度,避免了局部最优解的影响;对比SVDLS算法,PSO-MLEM算法的反演精度明显提升.
AbstractList TL99; 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业.在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤.目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法.针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度.应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中6Li的NDP模拟能谱进行反演,并对反演计算结果进行了评价.结果表明:对比PSO算法,PSO-MLEM算法的收敛效率与计算精度明显提升;对比MLEM算法,PSO-MLEM算法的全局寻优能力有效提升了反演精度,避免了局部最优解的影响;对比SVDLS算法,PSO-MLEM算法的反演精度明显提升.
Abstract_FL Neutron depth profiling(NDP)is a non-destructive analysis method which is widely used in lithium batteries,semiconductors,and other complex and high-precision industries.The NDP spectrum is the second particles of the interaction between neutrons and target nuclides,and then the content and spatial information of the target nuclides in the measured samples are obtained by unfolding the NDP spectrum.At pres-ent,the common NDP spectrum unfolding algorithm is the maximum likelihood expecta-tion maximization(MLEM)algorithm.But in some case,the MLEM algorithm falls into the local optimal solution.In this paper,a hybrid PSO-MLEM algorithm by taking advantages of the wide search range of PSO(particle swarm optimization)and the fast convergence speed of MLEM was proposed.In the PSO-MLEM algorithm,the dynamic acceleration factor was used to balance the local optimal and the global optimal on the particle displacement in each iteration,which improved the convergence speed and the accuracy of the algorithm.The PSO-MLEM algorithm was applied to unfold the NDP spectra of lithium batteries with 0,5,and 10 hours of charging and discharging,which were simulated by Geant4 tool.The unfolding results of PSO-MLEM algorithm were compared to the results of PSO algorithm,MLEM algorithm and singular value decom-position solving least squares(SVDLS)algorithm.The correlation coefficients of the unfolding result by PSO-MLEM algorithm and the reference distributions are 0.993,0.984,and 0.946,respectively,and the relative average errors are 14.46%,9.84%,and 9.41%.Compared with PSO algorithm,the convergence speed of PSO-MLEM algorithm is improved from 800 times to 100 times,and the relative error is reduced from about 50%to about 10%.To the MLEM algorithm,the PSO-MLEM algorithm improves the global optimization capability and avoids the problem of local optimal solution caused by the influence of the initial value of the MLEM algorithm,especially with the result of 0 hour.The SVDLS algorithm is worked well in unfolding NDP spectra except the NDP spectrum of lithium battery at 0 hour.Compared to result of SVDLS algorithm,the PSO-MLEM algorithm has better convergence properties and is numerically stable.
Author 肖才锦
陈弘杰
肖鸿飞
程志强
杨芮
李远辉
张庆贤
AuthorAffiliation 成都理工大学地学核技术四川省重点实验室,四川成都 610059;中核医疗产业管理有限公司 北京 100097%核工业北京地质研究院,北京 100029%成都理工大学地学核技术四川省重点实验室,四川成都 610059%中国原子能科学研究院,北京 102413
AuthorAffiliation_xml – name: 成都理工大学地学核技术四川省重点实验室,四川成都 610059;中核医疗产业管理有限公司 北京 100097%核工业北京地质研究院,北京 100029%成都理工大学地学核技术四川省重点实验室,四川成都 610059%中国原子能科学研究院,北京 102413
Author_FL CHEN Hongjie
LI Yuanhui
XIAO Hongfei
CHENG Zhiqiang
XIAO Caijin
YANG Rui
ZHANG Qingxian
Author_FL_xml – sequence: 1
  fullname: LI Yuanhui
– sequence: 2
  fullname: YANG Rui
– sequence: 3
  fullname: ZHANG Qingxian
– sequence: 4
  fullname: XIAO Caijin
– sequence: 5
  fullname: CHEN Hongjie
– sequence: 6
  fullname: XIAO Hongfei
– sequence: 7
  fullname: CHENG Zhiqiang
Author_xml – sequence: 1
  fullname: 李远辉
– sequence: 2
  fullname: 杨芮
– sequence: 3
  fullname: 张庆贤
– sequence: 4
  fullname: 肖才锦
– sequence: 5
  fullname: 陈弘杰
– sequence: 6
  fullname: 肖鸿飞
– sequence: 7
  fullname: 程志强
BookMark eNrjYmDJy89LZWCQNTTQMzc1ttCvrMrWMzIwMtarzC-tyEzM0zMwMzFiYeA0NDAw0DWzNDbkYOAtLs5MAioxNLMwNDXgZLB6On_Xk119AcH-Tyf1-Pq4-j7bvv3phI7n66Y_2zz1-awWP5eAZ1u7X7b3P-3vfbZnClR8wZTnK7fxMLCmJeYUp_JCaW6GUDfXEGcPXR9_d09nRx_dYkMDY2Nd01Tz1NS0VDNDs7TkxFQLSzOjxEQDEwtj08QUM9MUS_O0FAMjM0PLZKCSJJMkM8Nk82RDixTzNCODRAtzU1MLY24GDYi55Yl5aYl56fFZ-aVFeUAb4yur8rIrsoqBXjYxMAV6yhgAxcJerA
ClassificationCodes TL99
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7538/yzk.2023.youxian.0642
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitle_FL Research on PSO and MLEM Hybrid Algorithm for NDP Spectrum Unfolding
EndPage 1159
ExternalDocumentID yznkxjs202405023
GrantInformation_xml – fundername: (四川省科技计划项目); (国家自然科学基金)
  funderid: (四川省科技计划项目); (国家自然科学基金)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1033-5e7eefe616fcae8962aa04835ad65d97fd02619cfe6b4b61c7c18d7f20a875583
ISSN 1000-6931
IngestDate Thu May 29 04:01:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 锂电池
neutron depth profiling analysis
lithium battery
粒子群算法
maximum likelihood expectation maximization algorithm
中子深度剖面分析
particle swarm optimization algorithm
最大似然期望最大化算法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1033-5e7eefe616fcae8962aa04835ad65d97fd02619cfe6b4b61c7c18d7f20a875583
PageCount 8
ParticipantIDs wanfang_journals_yznkxjs202405023
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 原子能科学技术
PublicationTitle_FL Atomic Energy Science and Technology
PublicationYear 2024
Publisher 成都理工大学地学核技术四川省重点实验室,四川成都 610059
中核医疗产业管理有限公司 北京 100097%核工业北京地质研究院,北京 100029%成都理工大学地学核技术四川省重点实验室,四川成都 610059%中国原子能科学研究院,北京 102413
Publisher_xml – name: 成都理工大学地学核技术四川省重点实验室,四川成都 610059
– name: 中核医疗产业管理有限公司 北京 100097%核工业北京地质研究院,北京 100029%成都理工大学地学核技术四川省重点实验室,四川成都 610059%中国原子能科学研究院,北京 102413
SSID ssib023168150
ssib051370635
ssj0039623
ssib002258403
ssib051074023
ssib001129213
Score 2.4172606
Snippet TL99;...
SourceID wanfang
SourceType Aggregation Database
StartPage 1152
Title 基于PSO和MLEM混合算法的NDP测量反演算法研究
URI https://d.wanfangdata.com.cn/periodical/yznkxjs202405023
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsIkRwYv4xDcR7JPsOjPbT28zs70EMTFgArmFnscqBjbgJpDsWVDwEZGI4EWvXryIBoJ_4G-4G_wLq3ommUncQxSGpqequrqqa3u6erZqmpCbmQ1sYhPWUIzbBss9r6E4zxrST7pJxpVKNOYOz8yK6QV2d5EvThz7WYtaWltNmulgbF7J_1gVYGBXzJL9B8vuMwUA1MG-UIKFoTySjanhVHdoFFLDsFRm7sF9BwyoimfumRlqBI0kXgj1qFLUSBoaqqVDtajmCNHQmM225xyQUxVRo6mSVHWwIZSq7VAx1Ww8h9DbQ2kaibrP6zgYFBQqYRvFMIqqFo3ajh5690tUKJCnCjH-Aio6puF-5LEDtJETtI46iMSKoUofIgmV6yAEKSsMR-FBSKwAf-EaMxqyigTaBFQXIminsUadQlF_NRKwKhDR_ZgduXJa6UorHGvhOgMNuVOPoaqVnhw1iLwDmoN8kfp7CBxxhFfBUBddxLAN2LOTg4D4kXYMYbgNokLgE5cQECCIx7E6LP8tcHa98gvqxXqFHwYQulxIywWNq9rE5bXVCbz_oObpwK0et4rCDhYzQzYGy00Y1VZzY2VtHZ5VTdyrVm7DfjDnxqC3vP64jwbwONAfI8cDCY5s7f2G883BswwO-I7g-1YhAAGeoOZXf7FzjBT2Kt-V-y3puQ8nFW5WS4ugyJ4pR6BIz0PZb4-V3GXl9bq297DmQM6fJqfKnd9UWEzjM2Ri8OgsOeEisNP-OXJn-HHn185rmMDDty9x6o62t4dvnu9-eT_6-m73w1OYnKNvL34_2xxuvhr92Crhn7Z2P38_TxY6Zj6ebpQHmzT6Pp6dyHOZ591c-KKb2lyBJtbi0Q7cZoJnWnYz92YkBZKEJcJPZeqrTHYDzyrJuWpdIJO9lV5-kUxpIa2nFU95GrDUs9bmQmiWiyyzNvDTS-RGqfVS-eDqLx022OUj0FwhJ6sZdpVMrj5Zy6-BO76aXHdm_gMl3KQt
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EPSO%E5%92%8CMLEM%E6%B7%B7%E5%90%88%E7%AE%97%E6%B3%95%E7%9A%84NDP%E6%B5%8B%E9%87%8F%E5%8F%8D%E6%BC%94%E7%AE%97%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%8E%9F%E5%AD%90%E8%83%BD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF&rft.au=%E6%9D%8E%E8%BF%9C%E8%BE%89&rft.au=%E6%9D%A8%E8%8A%AE&rft.au=%E5%BC%A0%E5%BA%86%E8%B4%A4&rft.au=%E8%82%96%E6%89%8D%E9%94%A6&rft.date=2024-05-01&rft.pub=%E6%88%90%E9%83%BD%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%9C%B0%E5%AD%A6%E6%A0%B8%E6%8A%80%E6%9C%AF%E5%9B%9B%E5%B7%9D%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%9B%9B%E5%B7%9D%E6%88%90%E9%83%BD+610059&rft.issn=1000-6931&rft.volume=58&rft.issue=5&rft.spage=1152&rft.epage=1159&rft_id=info:doi/10.7538%2Fyzk.2023.youxian.0642&rft.externalDocID=yznkxjs202405023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyznkxjs%2Fyznkxjs.jpg