基于多目标人工鱼群算法的符号回归

针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,优良分支得以稳定地遗传和继承,也更易解码.在引入蒙版、邻域、小生境、拥挤度等概念的基础上,设计和定义了适用于二叉堆编码的随机游动、觅食、追尾、逃脱等人工鱼行为算子.详尽的实验表明,提出算法在符号回归过程中能获取高质量的Pareto解.此外,对从Pareto前沿上选取折衷解及降低算法内存开销的方法也进行了讨论....

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 37; no. 2; pp. 340 - 354
Main Authors 刘庆, 任海鹏, 姚俊良, 刘龙
Format Journal Article
LanguageChinese
Published 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048 01.02.2020
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2019.80896

Cover

Abstract 针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,优良分支得以稳定地遗传和继承,也更易解码.在引入蒙版、邻域、小生境、拥挤度等概念的基础上,设计和定义了适用于二叉堆编码的随机游动、觅食、追尾、逃脱等人工鱼行为算子.详尽的实验表明,提出算法在符号回归过程中能获取高质量的Pareto解.此外,对从Pareto前沿上选取折衷解及降低算法内存开销的方法也进行了讨论.
AbstractList 针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,优良分支得以稳定地遗传和继承,也更易解码.在引入蒙版、邻域、小生境、拥挤度等概念的基础上,设计和定义了适用于二叉堆编码的随机游动、觅食、追尾、逃脱等人工鱼行为算子.详尽的实验表明,提出算法在符号回归过程中能获取高质量的Pareto解.此外,对从Pareto前沿上选取折衷解及降低算法内存开销的方法也进行了讨论.
Author 刘龙
刘庆
姚俊良
任海鹏
AuthorAffiliation 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048
AuthorAffiliation_xml – name: 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048
Author_FL LIU Qing
REN Hai-peng
LIU Long
YAO Jun-liang
Author_FL_xml – sequence: 1
  fullname: LIU Qing
– sequence: 2
  fullname: REN Hai-peng
– sequence: 3
  fullname: YAO Jun-liang
– sequence: 4
  fullname: LIU Long
Author_xml – sequence: 1
  fullname: 刘庆
– sequence: 2
  fullname: 任海鹏
– sequence: 3
  fullname: 姚俊良
– sequence: 4
  fullname: 刘龙
BookMark eNotjk9LwzAchnOY4Jy7-hm8tP6SNElzHMV_MPAyzyNpUlFLBhaReha8KQgibKAepicZiIdBUT_NsuK3sKDwwnN7nncNtdzIWYQ2MISCR3grGfRCAliGMcSSt1AbA0AQY0ZWUbcojjUAxkAEw20E_qlaVDd-Oq4ns-Xz9aKq_Pzl5_2z_p7Ws4flx309vqrfXv3t3E8e_dfdOlrJVF7Y7j876HBne5DsBf2D3f2k1w8KDJQEKWNKK62NjaQSnIMxTKfcCC1TomimlTAsimNIqSTNFSJkBJnU1FJrQAHtoM0_74VymXJHw5PR-ZlrisPTyzwvy5IAgWaY0F_UV1kx
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2019.80896
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Symbolic regression via a multi-objective artificial fish school algorithm
EndPage 354
ExternalDocumentID kzllyyy202002012
GrantInformation_xml – fundername: 国家自然科学基金项目; 陕西省特支计划科技创新领军人才项目支持资助
  funderid: (61502385,61673318); 陕西省特支计划科技创新领军人才项目支持资助
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1032-c55ababbde49a7660dd5bc6d7b9c2a3fba7d54880c39227527940f9b3e3ed0a03
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 二叉堆
语法树
多目标优化
符号回归
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1032-c55ababbde49a7660dd5bc6d7b9c2a3fba7d54880c39227527940f9b3e3ed0a03
PageCount 15
ParticipantIDs wanfang_journals_kzllyyy202002012
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2020
Publisher 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048
Publisher_xml – name: 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.2891276
Snippet 针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,...
SourceID wanfang
SourceType Aggregation Database
StartPage 340
Title 基于多目标人工鱼群算法的符号回归
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202002012
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-8152
  databaseCode: ADMLS
  dateStart: 20170701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620041
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT2ogfxE7-p4BxXk8lMMnOcZLMUUS-20FtJMomCZQu2PbRnwZuCIEIL6qF6koJ4KCzqr-l28Sd4872ZaTate6jCMmRn3_fbyXuzO3nP8-7UgS6YX8EmJw9ph-kS1hzLdafWGgK6gABTmFO-j6K5BXZ_kS9OnfrdOrW0vlbcLTcnPlfyP16FOfArPiX7D55tiMIEXIN_YQQPw3giH5OME9kjiSIZw1FkOKMYkTATE5kQBTMRUT6BPb-FQWBOkpgoTjJJkoAkKQInGSLCBaDIGLGSkEhu6ABl-1FKVITooocUkHtCpGGadIntNneY6SIFkEcZMCFIEhlSIAlcCOTixBZObHgrDRcYVXPA1mFL4UBENP4EkBN8oaxGJdRHgnBtZGXkR9geEQpZC0lUbwJ9iTawfZQOfweBTa9_5EyJEZ0jLSSdIa2xVo1ZjQ-s5qprTCaBsLFmgw5YKaTxDlh0UQvZJYIaZ4RGrxhHcPAEUzaGi5ByYhUL0Q1WVRUYrABUPWTBWqJK_EIg0xg5gtGsOuhLsA6YOXUzgEjTSfL_ZQeaYgkn1g5zWE9ABPxIHLTFd9x6p62gFtqCWi4_Cm3R7-OhN44Yht50XuF5SViqvpDHapybrOnZ5vLyxsYGehBe2B98hkJA9qe9GdV9-ODxOJcP8B_1Vm5J8dbR5MoUSzjw8d4BGyFE4fjIAA_CmLZaPXBk4rPm_Bej1PRGb0xhK7qiGveOKmEe5-vXef9JK_OcP-eddVvGWWXX_3lvavPpBe9Mq5DoRc8ffhjsD14Nd7ZG27sHH1_uDwbDvU-_vn4f_dwZ7b47-PZ2tPVi9OXz8PXecPv98MebS95CL5tP5zquF0pnFUtedkrO8yIvCl0xmcdR5GvNizLScSFLmod1kceaYzAuYcMDdqMQZ_1aFmEVVtrP_fCyN91f6VdXvNm6KikH9XVZVizH9ltBUNdYJQvr33F91bvt9F1y97rVpeNeu3YCmOve6fE6veFNrz1fr25CBr9W3HK-_gNcq6tq
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E7%9B%AE%E6%A0%87%E4%BA%BA%E5%B7%A5%E9%B1%BC%E7%BE%A4%E7%AE%97%E6%B3%95%E7%9A%84%E7%AC%A6%E5%8F%B7%E5%9B%9E%E5%BD%92&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E5%88%98%E5%BA%86&rft.au=%E4%BB%BB%E6%B5%B7%E9%B9%8F&rft.au=%E5%A7%9A%E4%BF%8A%E8%89%AF&rft.au=%E5%88%98%E9%BE%99&rft.date=2020-02-01&rft.pub=%E8%A5%BF%E5%AE%89%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E9%99%95%E8%A5%BF%E7%9C%81%E5%A4%8D%E6%9D%82%E7%B3%BB%E7%BB%9F%E6%8E%A7%E5%88%B6%E4%B8%8E%E6%99%BA%E8%83%BD%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89%2C710048&rft.issn=1000-8152&rft.volume=37&rft.issue=2&rft.spage=340&rft.epage=354&rft_id=info:doi/10.7641%2FCTA.2019.80896&rft.externalDocID=kzllyyy202002012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg