基于多目标人工鱼群算法的符号回归
针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,优良分支得以稳定地遗传和继承,也更易解码.在引入蒙版、邻域、小生境、拥挤度等概念的基础上,设计和定义了适用于二叉堆编码的随机游动、觅食、追尾、逃脱等人工鱼行为算子.详尽的实验表明,提出算法在符号回归过程中能获取高质量的Pareto解.此外,对从Pareto前沿上选取折衷解及降低算法内存开销的方法也进行了讨论....
Saved in:
| Published in | 控制理论与应用 Vol. 37; no. 2; pp. 340 - 354 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-8152 |
| DOI | 10.7641/CTA.2019.80896 |
Cover
| Abstract | 针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,优良分支得以稳定地遗传和继承,也更易解码.在引入蒙版、邻域、小生境、拥挤度等概念的基础上,设计和定义了适用于二叉堆编码的随机游动、觅食、追尾、逃脱等人工鱼行为算子.详尽的实验表明,提出算法在符号回归过程中能获取高质量的Pareto解.此外,对从Pareto前沿上选取折衷解及降低算法内存开销的方法也进行了讨论. |
|---|---|
| AbstractList | 针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,优良分支得以稳定地遗传和继承,也更易解码.在引入蒙版、邻域、小生境、拥挤度等概念的基础上,设计和定义了适用于二叉堆编码的随机游动、觅食、追尾、逃脱等人工鱼行为算子.详尽的实验表明,提出算法在符号回归过程中能获取高质量的Pareto解.此外,对从Pareto前沿上选取折衷解及降低算法内存开销的方法也进行了讨论. |
| Author | 刘龙 刘庆 姚俊良 任海鹏 |
| AuthorAffiliation | 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048 |
| AuthorAffiliation_xml | – name: 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048 |
| Author_FL | LIU Qing REN Hai-peng LIU Long YAO Jun-liang |
| Author_FL_xml | – sequence: 1 fullname: LIU Qing – sequence: 2 fullname: REN Hai-peng – sequence: 3 fullname: YAO Jun-liang – sequence: 4 fullname: LIU Long |
| Author_xml | – sequence: 1 fullname: 刘庆 – sequence: 2 fullname: 任海鹏 – sequence: 3 fullname: 姚俊良 – sequence: 4 fullname: 刘龙 |
| BookMark | eNotjk9LwzAchnOY4Jy7-hm8tP6SNElzHMV_MPAyzyNpUlFLBhaReha8KQgibKAepicZiIdBUT_NsuK3sKDwwnN7nncNtdzIWYQ2MISCR3grGfRCAliGMcSSt1AbA0AQY0ZWUbcojjUAxkAEw20E_qlaVDd-Oq4ns-Xz9aKq_Pzl5_2z_p7Ws4flx309vqrfXv3t3E8e_dfdOlrJVF7Y7j876HBne5DsBf2D3f2k1w8KDJQEKWNKK62NjaQSnIMxTKfcCC1TomimlTAsimNIqSTNFSJkBJnU1FJrQAHtoM0_74VymXJHw5PR-ZlrisPTyzwvy5IAgWaY0F_UV1kx |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.7641/CTA.2019.80896 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Symbolic regression via a multi-objective artificial fish school algorithm |
| EndPage | 354 |
| ExternalDocumentID | kzllyyy202002012 |
| GrantInformation_xml | – fundername: 国家自然科学基金项目; 陕西省特支计划科技创新领军人才项目支持资助 funderid: (61502385,61673318); 陕西省特支计划科技创新领军人才项目支持资助 |
| GroupedDBID | -01 -0Y 2B. 4A8 5XA 5XJ 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CCVFK CUBFJ CW9 PSX TCJ TGT U1G U5S UY8 |
| ID | FETCH-LOGICAL-s1032-c55ababbde49a7660dd5bc6d7b9c2a3fba7d54880c39227527940f9b3e3ed0a03 |
| ISSN | 1000-8152 |
| IngestDate | Thu May 29 04:08:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 二叉堆 语法树 多目标优化 符号回归 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1032-c55ababbde49a7660dd5bc6d7b9c2a3fba7d54880c39227527940f9b3e3ed0a03 |
| PageCount | 15 |
| ParticipantIDs | wanfang_journals_kzllyyy202002012 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 控制理论与应用 |
| PublicationTitle_FL | Control Theory & Applications |
| PublicationYear | 2020 |
| Publisher | 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048 |
| Publisher_xml | – name: 西安理工大学陕西省复杂系统控制与智能信息处理重点实验室,陕西西安,710048 |
| SSID | ssib001102751 ssib002258297 ssib023646306 ssib057620041 ssib051372463 ssj0042201 ssib023167526 |
| Score | 2.2891276 |
| Snippet | 针对现有符号回归方法仅关注拟合误差而忽略模型简化的问题,提出了一种基于多目标的人工鱼群算法,将拟合误差与模型复杂度同时作为目标函数进行优化.以二叉堆对语法树编码,... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 340 |
| Title | 基于多目标人工鱼群算法的符号回归 |
| URI | https://d.wanfangdata.com.cn/periodical/kzllyyy202002012 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1000-8152 databaseCode: ADMLS dateStart: 20170701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620041 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT2ogfxE7-p4BxXk8lMMnOcZLMUUS-20FtJMomCZQu2PbRnwZuCIEIL6qF6koJ4KCzqr-l28Sd4872ZaTate6jCMmRn3_fbyXuzO3nP8-7UgS6YX8EmJw9ph-kS1hzLdafWGgK6gABTmFO-j6K5BXZ_kS9OnfrdOrW0vlbcLTcnPlfyP16FOfArPiX7D55tiMIEXIN_YQQPw3giH5OME9kjiSIZw1FkOKMYkTATE5kQBTMRUT6BPb-FQWBOkpgoTjJJkoAkKQInGSLCBaDIGLGSkEhu6ABl-1FKVITooocUkHtCpGGadIntNneY6SIFkEcZMCFIEhlSIAlcCOTixBZObHgrDRcYVXPA1mFL4UBENP4EkBN8oaxGJdRHgnBtZGXkR9geEQpZC0lUbwJ9iTawfZQOfweBTa9_5EyJEZ0jLSSdIa2xVo1ZjQ-s5qprTCaBsLFmgw5YKaTxDlh0UQvZJYIaZ4RGrxhHcPAEUzaGi5ByYhUL0Q1WVRUYrABUPWTBWqJK_EIg0xg5gtGsOuhLsA6YOXUzgEjTSfL_ZQeaYgkn1g5zWE9ABPxIHLTFd9x6p62gFtqCWi4_Cm3R7-OhN44Yht50XuF5SViqvpDHapybrOnZ5vLyxsYGehBe2B98hkJA9qe9GdV9-ODxOJcP8B_1Vm5J8dbR5MoUSzjw8d4BGyFE4fjIAA_CmLZaPXBk4rPm_Bej1PRGb0xhK7qiGveOKmEe5-vXef9JK_OcP-eddVvGWWXX_3lvavPpBe9Mq5DoRc8ffhjsD14Nd7ZG27sHH1_uDwbDvU-_vn4f_dwZ7b47-PZ2tPVi9OXz8PXecPv98MebS95CL5tP5zquF0pnFUtedkrO8yIvCl0xmcdR5GvNizLScSFLmod1kceaYzAuYcMDdqMQZ_1aFmEVVtrP_fCyN91f6VdXvNm6KikH9XVZVizH9ltBUNdYJQvr33F91bvt9F1y97rVpeNeu3YCmOve6fE6veFNrz1fr25CBr9W3HK-_gNcq6tq |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E7%9B%AE%E6%A0%87%E4%BA%BA%E5%B7%A5%E9%B1%BC%E7%BE%A4%E7%AE%97%E6%B3%95%E7%9A%84%E7%AC%A6%E5%8F%B7%E5%9B%9E%E5%BD%92&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E5%88%98%E5%BA%86&rft.au=%E4%BB%BB%E6%B5%B7%E9%B9%8F&rft.au=%E5%A7%9A%E4%BF%8A%E8%89%AF&rft.au=%E5%88%98%E9%BE%99&rft.date=2020-02-01&rft.pub=%E8%A5%BF%E5%AE%89%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E9%99%95%E8%A5%BF%E7%9C%81%E5%A4%8D%E6%9D%82%E7%B3%BB%E7%BB%9F%E6%8E%A7%E5%88%B6%E4%B8%8E%E6%99%BA%E8%83%BD%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89%2C710048&rft.issn=1000-8152&rft.volume=37&rft.issue=2&rft.spage=340&rft.epage=354&rft_id=info:doi/10.7641%2FCTA.2019.80896&rft.externalDocID=kzllyyy202002012 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg |