和积网络研究综述

和积网络(SPNs)是一种基于有根有向无环图的深度概率图模型.除了叶节点外,其余节点由求和节点或求积节点组成.和积网络与概率图模型密切相关,但是,和积网络计算过程仅涉及简单的网络多项式求和运算和求积运算,且能够实现精确和近似推理.与经典的概率图模型相比,和积网络可以从训练数据中构建易于推理的模型.此外,和积网络也可以作为类似于神经网络的深度学习模型使用.本文主要从和积网络的基本原理、理论研究、学习技术、变体模型及各领域具体应用等问题进行详细阐述.首先,概述和积网络的基本原理,包括和积网络理论的研究现状.其次,概述了和积网络的几类变体模型,并总结了和积网络学习技术中的参数学习和结构学习方面的学习...

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 41; no. 11; pp. 1965 - 1990
Main Authors 代琪, 刘建伟
Format Journal Article
LanguageChinese
Published 中国石油大学(北京)自动化系,北京 102249 01.11.2024
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2023.20707

Cover

Abstract 和积网络(SPNs)是一种基于有根有向无环图的深度概率图模型.除了叶节点外,其余节点由求和节点或求积节点组成.和积网络与概率图模型密切相关,但是,和积网络计算过程仅涉及简单的网络多项式求和运算和求积运算,且能够实现精确和近似推理.与经典的概率图模型相比,和积网络可以从训练数据中构建易于推理的模型.此外,和积网络也可以作为类似于神经网络的深度学习模型使用.本文主要从和积网络的基本原理、理论研究、学习技术、变体模型及各领域具体应用等问题进行详细阐述.首先,概述和积网络的基本原理,包括和积网络理论的研究现状.其次,概述了和积网络的几类变体模型,并总结了和积网络学习技术中的参数学习和结构学习方面的学习算法.除此之外,本文还从自然语言处理、语音识别、医学研究等特定应用领域概述了基于和积网络的应用模型.最后,根据现有的研究基础对和积网络未来的发展趋势及方向进行了展望.
AbstractList 和积网络(SPNs)是一种基于有根有向无环图的深度概率图模型.除了叶节点外,其余节点由求和节点或求积节点组成.和积网络与概率图模型密切相关,但是,和积网络计算过程仅涉及简单的网络多项式求和运算和求积运算,且能够实现精确和近似推理.与经典的概率图模型相比,和积网络可以从训练数据中构建易于推理的模型.此外,和积网络也可以作为类似于神经网络的深度学习模型使用.本文主要从和积网络的基本原理、理论研究、学习技术、变体模型及各领域具体应用等问题进行详细阐述.首先,概述和积网络的基本原理,包括和积网络理论的研究现状.其次,概述了和积网络的几类变体模型,并总结了和积网络学习技术中的参数学习和结构学习方面的学习算法.除此之外,本文还从自然语言处理、语音识别、医学研究等特定应用领域概述了基于和积网络的应用模型.最后,根据现有的研究基础对和积网络未来的发展趋势及方向进行了展望.
Abstract_FL Sum-product networks(SPNs)are deep probabilistic graphical models based on rooted directed acyclic graphs.Except for leaf nodes,the remaining nodes are composed of summation nodes or quadrature nodes.Sum-product networks are closely related to probabilistic graph models,but the calculation process of sum-product networks only in-volves simple network polynomial summation and quadrature operations,and can achieve accurate and approximate rea-soning.Compared with classical probability graph models,sum-product networks can construct models that are easy to reason from training data.In addition,sum-product networks can also be used as deep learning models similar to neural networks.This paper mainly elaborates on the basic principles,theoretical research,learning techniques,variant models,and specific applications in various fields of sum-product networks.Firstly,the basic principles of sum-product networks are summarized,including the current research status of sum-product network theory.Secondly,several types of variant models of sum-product networks are summarized,and learning algorithms for parameter learning and structure learning in sum-product network learning techniques are summarized.In addition,we have also outlined sum-product network based application models in specific application fields such as natural language processing,speech recognition,and medical re-search.Finally,based on the existing research foundation,the future development trends and directions of sum-product networks are prospected.
Author 代琪
刘建伟
AuthorAffiliation 中国石油大学(北京)自动化系,北京 102249
AuthorAffiliation_xml – name: 中国石油大学(北京)自动化系,北京 102249
Author_FL LIU Jian-wei
DAI Qi
Author_FL_xml – sequence: 1
  fullname: DAI Qi
– sequence: 2
  fullname: LIU Jian-wei
Author_xml – sequence: 1
  fullname: 代琪
– sequence: 2
  fullname: 刘建伟
BookMark eNotj71KA0EUhW8RITFJG3wEm433zr9lWPwJBGxiHWZ2d0RdJuAisj6DjWJpYSeptLKJkqeR8TEcMM053fnOtwudsAwVwIhwrJWgg3w-GTNkPIVG3YEeIWJmSLIuDJvm0iESIdOSerD38_QQ397j92Ncv8TX57j6jOuv383HAHa8rZtquO0-nB8fzfPTbHZ2Ms0ns6wh5CwzaJwrSoNW8FJKElKVXBlrPJXWe2mUQvS8qJTxvPJa4KFyFg0rCnKSE-_D_v_unQ3ehovF1fL2JiTi4vq-rtu2TSYi3U0-f864RwA
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2023.20707
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Survey of sum-product networks
EndPage 1990
ExternalDocumentID kzllyyy202411002
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1032-808bbcd80a43d551456d368a8f1daff586600f3ce68f3ef74096ba082cc1b5313
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords 概率图模型
sum-product network
SPNs的学习技术
和积网络
深度学习
probabilistic graphical model:deep learning
learn techniques of SPNs
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1032-808bbcd80a43d551456d368a8f1daff586600f3ce68f3ef74096ba082cc1b5313
PageCount 26
ParticipantIDs wanfang_journals_kzllyyy202411002
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2024
Publisher 中国石油大学(北京)自动化系,北京 102249
Publisher_xml – name: 中国石油大学(北京)自动化系,北京 102249
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.462817
SecondaryResourceType review_article
Snippet 和积网络(SPNs)是一种基于有根有向无环图的深度概率图模型.除了叶节点外,其余节点由求和节点或求积节点组成.和积网络与概率图模型密切相关,但是,和积网络计算过程仅涉及简...
SourceID wanfang
SourceType Aggregation Database
StartPage 1965
Title 和积网络研究综述
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202411002
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-8152
  databaseCode: ADMLS
  dateStart: 20170701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620041
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq7gUOiKeWpxYJn1CWxK_YRztNtUIsF7rS3lZ5NCCxKhLbPbS_gQuIIwduiBOcuCyI_4KEws9gxknbbOGwIFWWY4_Hj3Hsz41nhpB7sIuUY5i4QVixMhCllEFechYoVYwVr4oiHKOi8O5jtbMnHu7L_V7vR-fW0vE03y7mf9Ur-R-pQhrIFbVk_0GyS6aQAHGQL4QgYQjPJGOaSmoY1QlNY2rhN8SIG1AT-YijpskKqRE-YqhTbZaDLE3dkLqwi1BpqqhOkRsw17qlNyHVCultSp2lqaBOIxnQwGPDHEK7vBjrSRy1vC1t7SrH8zXaF3YLdgk1w-5fEEy0uniLSdNWage-1w67iayh_Rzb7Bh1BrOsaBsPlFYBgPYVAvvYc7DUJpQZ7IuGAbE-FxKXZM34cGwaS_4se99bxzOdxRy15nUkT632jZmtxayOOms32lbs4IDINH5M1_eYWAncY5KR3UbX8xDEjd_eNbvdz-eHh7PZDMcLzfIBTNhgsPOEfbJhB7uPnqxAa4SfjjsgiknUd148M7RVIFcgGS3-K776Ni4jHrOOTwOJlYRiedFJMOadgC9HozFdit14cLoTXm9tUmWTpx2INbpILrRnoy3bTPRLpDd_dpmc71jMvEI2f755VX_4VH97XZ-8q9-_rT9-qU--_vr--SrZG6ajZCdonXsER2jDEZCRzvOi1GEmeImwXaqSK53pKiqzqpJaARSvOKwYuuLjKhZw1s4zAKxFEeWwcfBrpD95MRlvki0Vwxk-z1QJQyHCSpk85CLL0fgoAPxMXid3234dtC_v0cG6dG6cgeYmObea_bdIf_ryeHwbIOk0v9PK9De5jF04
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%92%8C%E7%A7%AF%E7%BD%91%E7%BB%9C%E7%A0%94%E7%A9%B6%E7%BB%BC%E8%BF%B0&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E4%BB%A3%E7%90%AA&rft.au=%E5%88%98%E5%BB%BA%E4%BC%9F&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%28%E5%8C%97%E4%BA%AC%29%E8%87%AA%E5%8A%A8%E5%8C%96%E7%B3%BB%2C%E5%8C%97%E4%BA%AC+102249&rft.issn=1000-8152&rft.volume=41&rft.issue=11&rft.spage=1965&rft.epage=1990&rft_id=info:doi/10.7641%2FCTA.2023.20707&rft.externalDocID=kzllyyy202411002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg